Properties

Label 2-155682-1.1-c1-0-21
Degree $2$
Conductor $155682$
Sign $-1$
Analytic cond. $1243.12$
Root an. cond. $35.2580$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 2·7-s + 8-s + 3·11-s − 2·13-s + 2·14-s + 16-s + 3·17-s − 19-s + 3·22-s + 6·23-s − 5·25-s − 2·26-s + 2·28-s − 6·29-s + 32-s + 3·34-s + 4·37-s − 38-s + 9·41-s + 43-s + 3·44-s + 6·46-s − 6·47-s − 3·49-s − 5·50-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.755·7-s + 0.353·8-s + 0.904·11-s − 0.554·13-s + 0.534·14-s + 1/4·16-s + 0.727·17-s − 0.229·19-s + 0.639·22-s + 1.25·23-s − 25-s − 0.392·26-s + 0.377·28-s − 1.11·29-s + 0.176·32-s + 0.514·34-s + 0.657·37-s − 0.162·38-s + 1.40·41-s + 0.152·43-s + 0.452·44-s + 0.884·46-s − 0.875·47-s − 3/7·49-s − 0.707·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 155682 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 155682 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(155682\)    =    \(2 \cdot 3^{4} \cdot 31^{2}\)
Sign: $-1$
Analytic conductor: \(1243.12\)
Root analytic conductor: \(35.2580\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 155682,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
31 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 6 T + p T^{2} \) 1.29.g
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 - 5 T + p T^{2} \) 1.67.af
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 5 T + p T^{2} \) 1.97.af
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.49206882086851, −13.02007974637040, −12.68850998642586, −12.09381399186399, −11.67361591144771, −11.15405009365698, −11.04101093009252, −10.23203724904294, −9.649088963033905, −9.338201967914384, −8.734079462970759, −8.068981717911653, −7.587346155978905, −7.299896974066875, −6.619148234662422, −6.024053504496355, −5.672993794622378, −5.023699395814731, −4.503818602427821, −4.160464907136729, −3.399027968717769, −2.976433934400371, −2.200542447631342, −1.575820570699927, −1.113095659644886, 0, 1.113095659644886, 1.575820570699927, 2.200542447631342, 2.976433934400371, 3.399027968717769, 4.160464907136729, 4.503818602427821, 5.023699395814731, 5.672993794622378, 6.024053504496355, 6.619148234662422, 7.299896974066875, 7.587346155978905, 8.068981717911653, 8.734079462970759, 9.338201967914384, 9.649088963033905, 10.23203724904294, 11.04101093009252, 11.15405009365698, 11.67361591144771, 12.09381399186399, 12.68850998642586, 13.02007974637040, 13.49206882086851

Graph of the $Z$-function along the critical line