| L(s) = 1 | − 3-s − 2·4-s − 5-s − 2·9-s − 4·11-s + 2·12-s − 6·13-s + 15-s + 4·16-s + 5·17-s − 19-s + 2·20-s + 8·23-s + 25-s + 5·27-s − 10·29-s − 31-s + 4·33-s + 4·36-s + 37-s + 6·39-s − 3·41-s − 7·43-s + 8·44-s + 2·45-s − 6·47-s − 4·48-s + ⋯ |
| L(s) = 1 | − 0.577·3-s − 4-s − 0.447·5-s − 2/3·9-s − 1.20·11-s + 0.577·12-s − 1.66·13-s + 0.258·15-s + 16-s + 1.21·17-s − 0.229·19-s + 0.447·20-s + 1.66·23-s + 1/5·25-s + 0.962·27-s − 1.85·29-s − 0.179·31-s + 0.696·33-s + 2/3·36-s + 0.164·37-s + 0.960·39-s − 0.468·41-s − 1.06·43-s + 1.20·44-s + 0.298·45-s − 0.875·47-s − 0.577·48-s + ⋯ |
Λ(s)=(=(155s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(155s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
| L(1) |
= |
0 |
| L(21) |
= |
0 |
| L(23) |
|
not available |
| L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) | Isogeny Class over Fp |
|---|
| bad | 5 | 1+T | |
| 31 | 1+T | |
| good | 2 | 1+pT2 | 1.2.a |
| 3 | 1+T+pT2 | 1.3.b |
| 7 | 1+pT2 | 1.7.a |
| 11 | 1+4T+pT2 | 1.11.e |
| 13 | 1+6T+pT2 | 1.13.g |
| 17 | 1−5T+pT2 | 1.17.af |
| 19 | 1+T+pT2 | 1.19.b |
| 23 | 1−8T+pT2 | 1.23.ai |
| 29 | 1+10T+pT2 | 1.29.k |
| 37 | 1−T+pT2 | 1.37.ab |
| 41 | 1+3T+pT2 | 1.41.d |
| 43 | 1+7T+pT2 | 1.43.h |
| 47 | 1+6T+pT2 | 1.47.g |
| 53 | 1−5T+pT2 | 1.53.af |
| 59 | 1−11T+pT2 | 1.59.al |
| 61 | 1+12T+pT2 | 1.61.m |
| 67 | 1+2T+pT2 | 1.67.c |
| 71 | 1−9T+pT2 | 1.71.aj |
| 73 | 1+9T+pT2 | 1.73.j |
| 79 | 1+10T+pT2 | 1.79.k |
| 83 | 1−9T+pT2 | 1.83.aj |
| 89 | 1+pT2 | 1.89.a |
| 97 | 1+14T+pT2 | 1.97.o |
| show more | |
| show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.53492345415150194745579045042, −11.52172098246188687978252120211, −10.40498491793852039325606374168, −9.458542992010369876640633952126, −8.232098142144935795769541453640, −7.31046477239498505884334187868, −5.44890211749766646861026772927, −4.92691899597547312483394760424, −3.14330660201336049402162930576, 0,
3.14330660201336049402162930576, 4.92691899597547312483394760424, 5.44890211749766646861026772927, 7.31046477239498505884334187868, 8.232098142144935795769541453640, 9.458542992010369876640633952126, 10.40498491793852039325606374168, 11.52172098246188687978252120211, 12.53492345415150194745579045042