Properties

Label 2-152880-1.1-c1-0-32
Degree $2$
Conductor $152880$
Sign $1$
Analytic cond. $1220.75$
Root an. cond. $34.9392$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s + 9-s − 4·11-s − 13-s − 15-s + 6·17-s − 8·19-s − 8·23-s + 25-s − 27-s + 2·29-s + 8·31-s + 4·33-s + 2·37-s + 39-s + 2·41-s + 8·43-s + 45-s − 12·47-s − 6·51-s + 10·53-s − 4·55-s + 8·57-s + 4·59-s − 2·61-s − 65-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s + 1/3·9-s − 1.20·11-s − 0.277·13-s − 0.258·15-s + 1.45·17-s − 1.83·19-s − 1.66·23-s + 1/5·25-s − 0.192·27-s + 0.371·29-s + 1.43·31-s + 0.696·33-s + 0.328·37-s + 0.160·39-s + 0.312·41-s + 1.21·43-s + 0.149·45-s − 1.75·47-s − 0.840·51-s + 1.37·53-s − 0.539·55-s + 1.05·57-s + 0.520·59-s − 0.256·61-s − 0.124·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 152880 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 152880 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(152880\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(1220.75\)
Root analytic conductor: \(34.9392\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 152880,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.489830748\)
\(L(\frac12)\) \(\approx\) \(1.489830748\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 \)
13 \( 1 + T \)
good11 \( 1 + 4 T + p T^{2} \) 1.11.e
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.21569794451543, −12.84007660512408, −12.22341403952958, −12.16320670313276, −11.35696413867424, −10.91623283852829, −10.24775959632300, −10.12345418803554, −9.794627521763302, −8.990150587584886, −8.281716046953303, −8.040939472496443, −7.592809942513739, −6.816077510151804, −6.356352136935447, −5.857809235741585, −5.525515344727351, −4.832436456113073, −4.425499708792574, −3.798342253832097, −3.061369326713613, −2.318320269075593, −2.078535974734194, −1.073306172410273, −0.4071527472569952, 0.4071527472569952, 1.073306172410273, 2.078535974734194, 2.318320269075593, 3.061369326713613, 3.798342253832097, 4.425499708792574, 4.832436456113073, 5.525515344727351, 5.857809235741585, 6.356352136935447, 6.816077510151804, 7.592809942513739, 8.040939472496443, 8.281716046953303, 8.990150587584886, 9.794627521763302, 10.12345418803554, 10.24775959632300, 10.91623283852829, 11.35696413867424, 12.16320670313276, 12.22341403952958, 12.84007660512408, 13.21569794451543

Graph of the $Z$-function along the critical line