Properties

Label 2-152880-1.1-c1-0-96
Degree $2$
Conductor $152880$
Sign $-1$
Analytic cond. $1220.75$
Root an. cond. $34.9392$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s + 9-s + 4·11-s − 13-s + 15-s − 6·17-s − 8·19-s − 2·23-s + 25-s − 27-s + 2·29-s − 4·33-s + 2·37-s + 39-s + 6·41-s − 45-s − 8·47-s + 6·51-s − 12·53-s − 4·55-s + 8·57-s + 4·59-s − 10·61-s + 65-s − 4·67-s + 2·69-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s + 1/3·9-s + 1.20·11-s − 0.277·13-s + 0.258·15-s − 1.45·17-s − 1.83·19-s − 0.417·23-s + 1/5·25-s − 0.192·27-s + 0.371·29-s − 0.696·33-s + 0.328·37-s + 0.160·39-s + 0.937·41-s − 0.149·45-s − 1.16·47-s + 0.840·51-s − 1.64·53-s − 0.539·55-s + 1.05·57-s + 0.520·59-s − 1.28·61-s + 0.124·65-s − 0.488·67-s + 0.240·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 152880 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 152880 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(152880\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(1220.75\)
Root analytic conductor: \(34.9392\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 152880,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 + T \)
7 \( 1 \)
13 \( 1 + T \)
good11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.40870859839387, −13.04586689900833, −12.45428767691643, −12.23998391016552, −11.53444844364195, −11.24306809056989, −10.81477440856565, −10.36154075894606, −9.699950578846787, −9.157166799039796, −8.852546245646444, −8.188654713793103, −7.806715683113841, −7.032883408650168, −6.576074658692868, −6.324261577016948, −5.848022370630910, −4.868583546575903, −4.531950313654657, −4.171320178751899, −3.590191762006196, −2.803002760048267, −2.049805844876666, −1.623814617154902, −0.6510386435810265, 0, 0.6510386435810265, 1.623814617154902, 2.049805844876666, 2.803002760048267, 3.590191762006196, 4.171320178751899, 4.531950313654657, 4.868583546575903, 5.848022370630910, 6.324261577016948, 6.576074658692868, 7.032883408650168, 7.806715683113841, 8.188654713793103, 8.852546245646444, 9.157166799039796, 9.699950578846787, 10.36154075894606, 10.81477440856565, 11.24306809056989, 11.53444844364195, 12.23998391016552, 12.45428767691643, 13.04586689900833, 13.40870859839387

Graph of the $Z$-function along the critical line