Properties

Label 2-149058-1.1-c1-0-13
Degree $2$
Conductor $149058$
Sign $1$
Analytic cond. $1190.23$
Root an. cond. $34.4997$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 5-s − 8-s + 10-s + 3·11-s + 16-s − 7·17-s − 3·19-s − 20-s − 3·22-s + 23-s − 4·25-s + 29-s + 8·31-s − 32-s + 7·34-s + 37-s + 3·38-s + 40-s + 4·41-s + 5·43-s + 3·44-s − 46-s + 4·50-s + 6·53-s − 3·55-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.447·5-s − 0.353·8-s + 0.316·10-s + 0.904·11-s + 1/4·16-s − 1.69·17-s − 0.688·19-s − 0.223·20-s − 0.639·22-s + 0.208·23-s − 4/5·25-s + 0.185·29-s + 1.43·31-s − 0.176·32-s + 1.20·34-s + 0.164·37-s + 0.486·38-s + 0.158·40-s + 0.624·41-s + 0.762·43-s + 0.452·44-s − 0.147·46-s + 0.565·50-s + 0.824·53-s − 0.404·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 149058 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 149058 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(149058\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(1190.23\)
Root analytic conductor: \(34.4997\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 149058,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8349105452\)
\(L(\frac12)\) \(\approx\) \(0.8349105452\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
7 \( 1 \)
13 \( 1 \)
good5 \( 1 + T + p T^{2} \) 1.5.b
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
17 \( 1 + 7 T + p T^{2} \) 1.17.h
19 \( 1 + 3 T + p T^{2} \) 1.19.d
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 - T + p T^{2} \) 1.29.ab
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - T + p T^{2} \) 1.37.ab
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 - 5 T + p T^{2} \) 1.43.af
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 - 13 T + p T^{2} \) 1.61.an
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + 13 T + p T^{2} \) 1.73.n
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.29448562210163, −12.89117620852105, −12.15136230666603, −11.91466096771525, −11.27118492303100, −11.10667047324184, −10.44570558823860, −9.969104255160968, −9.448451788569320, −8.891727174582575, −8.588205080598928, −8.176173024657007, −7.394766203371561, −7.135018738477950, −6.430963517032028, −6.199722111544649, −5.550985244591632, −4.613463196052517, −4.240515767172186, −3.900919721906427, −2.892037053614419, −2.532641219106085, −1.778075340448296, −1.156548107108500, −0.3221967214394491, 0.3221967214394491, 1.156548107108500, 1.778075340448296, 2.532641219106085, 2.892037053614419, 3.900919721906427, 4.240515767172186, 4.613463196052517, 5.550985244591632, 6.199722111544649, 6.430963517032028, 7.135018738477950, 7.394766203371561, 8.176173024657007, 8.588205080598928, 8.891727174582575, 9.448451788569320, 9.969104255160968, 10.44570558823860, 11.10667047324184, 11.27118492303100, 11.91466096771525, 12.15136230666603, 12.89117620852105, 13.29448562210163

Graph of the $Z$-function along the critical line