Properties

Label 2-148137-1.1-c1-0-2
Degree $2$
Conductor $148137$
Sign $1$
Analytic cond. $1182.87$
Root an. cond. $34.3930$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s − 4-s − 6-s + 3·8-s + 9-s + 11-s − 12-s − 4·13-s − 16-s + 2·17-s − 18-s − 2·19-s − 22-s + 2·23-s + 3·24-s − 5·25-s + 4·26-s + 27-s − 2·29-s − 8·31-s − 5·32-s + 33-s − 2·34-s − 36-s − 6·37-s + 2·38-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s − 1/2·4-s − 0.408·6-s + 1.06·8-s + 1/3·9-s + 0.301·11-s − 0.288·12-s − 1.10·13-s − 1/4·16-s + 0.485·17-s − 0.235·18-s − 0.458·19-s − 0.213·22-s + 0.417·23-s + 0.612·24-s − 25-s + 0.784·26-s + 0.192·27-s − 0.371·29-s − 1.43·31-s − 0.883·32-s + 0.174·33-s − 0.342·34-s − 1/6·36-s − 0.986·37-s + 0.324·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 148137 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 148137 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(148137\)    =    \(3 \cdot 11 \cdot 67^{2}\)
Sign: $1$
Analytic conductor: \(1182.87\)
Root analytic conductor: \(34.3930\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 148137,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7694895280\)
\(L(\frac12)\) \(\approx\) \(0.7694895280\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 - T \)
11 \( 1 - T \)
67 \( 1 \)
good2 \( 1 + T + p T^{2} \) 1.2.b
5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
71 \( 1 - 2 T + p T^{2} \) 1.71.ac
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.27571977229115, −12.80494646429509, −12.64708020623945, −11.91361781894536, −11.38525999529000, −10.73644660860776, −10.43691663401831, −9.720449822053813, −9.503594825633976, −9.085501129521388, −8.626876317059256, −7.963468103929716, −7.619482975401559, −7.264820335822157, −6.683221556120393, −5.807389305249776, −5.467924434564504, −4.588189789263935, −4.455971566129002, −3.603023596371675, −3.256746533105341, −2.291363668694701, −1.877952203169992, −1.193861739982344, −0.2964417915368658, 0.2964417915368658, 1.193861739982344, 1.877952203169992, 2.291363668694701, 3.256746533105341, 3.603023596371675, 4.455971566129002, 4.588189789263935, 5.467924434564504, 5.807389305249776, 6.683221556120393, 7.264820335822157, 7.619482975401559, 7.963468103929716, 8.626876317059256, 9.085501129521388, 9.503594825633976, 9.720449822053813, 10.43691663401831, 10.73644660860776, 11.38525999529000, 11.91361781894536, 12.64708020623945, 12.80494646429509, 13.27571977229115

Graph of the $Z$-function along the critical line