| L(s)  = 1  |   − 2-s   + 3-s   − 4-s     − 6-s     + 3·8-s   + 9-s     + 11-s   − 12-s   − 4·13-s       − 16-s   + 2·17-s   − 18-s   − 2·19-s       − 22-s   + 2·23-s   + 3·24-s   − 5·25-s   + 4·26-s   + 27-s     − 2·29-s     − 8·31-s   − 5·32-s   + 33-s   − 2·34-s     − 36-s   − 6·37-s   + 2·38-s  + ⋯ | 
 
| L(s)  = 1  |   − 0.707·2-s   + 0.577·3-s   − 1/2·4-s     − 0.408·6-s     + 1.06·8-s   + 1/3·9-s     + 0.301·11-s   − 0.288·12-s   − 1.10·13-s       − 1/4·16-s   + 0.485·17-s   − 0.235·18-s   − 0.458·19-s       − 0.213·22-s   + 0.417·23-s   + 0.612·24-s   − 25-s   + 0.784·26-s   + 0.192·27-s     − 0.371·29-s     − 1.43·31-s   − 0.883·32-s   + 0.174·33-s   − 0.342·34-s     − 1/6·36-s   − 0.986·37-s   + 0.324·38-s  + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 148137 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 148137 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(1)\)  | 
            \(\approx\) | 
             \(0.7694895280\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(\approx\) | 
      
       \(0.7694895280\)  | 
    
    
        
      |  \(L(\frac{3}{2})\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 3 |  \( 1 - T \)  |    | 
 | 11 |  \( 1 - T \)  |    | 
 | 67 |  \( 1 \)  |    | 
| good | 2 |  \( 1 + T + p T^{2} \)  |  1.2.b  | 
 | 5 |  \( 1 + p T^{2} \)  |  1.5.a  | 
 | 7 |  \( 1 + p T^{2} \)  |  1.7.a  | 
 | 13 |  \( 1 + 4 T + p T^{2} \)  |  1.13.e  | 
 | 17 |  \( 1 - 2 T + p T^{2} \)  |  1.17.ac  | 
 | 19 |  \( 1 + 2 T + p T^{2} \)  |  1.19.c  | 
 | 23 |  \( 1 - 2 T + p T^{2} \)  |  1.23.ac  | 
 | 29 |  \( 1 + 2 T + p T^{2} \)  |  1.29.c  | 
 | 31 |  \( 1 + 8 T + p T^{2} \)  |  1.31.i  | 
 | 37 |  \( 1 + 6 T + p T^{2} \)  |  1.37.g  | 
 | 41 |  \( 1 - 6 T + p T^{2} \)  |  1.41.ag  | 
 | 43 |  \( 1 - 12 T + p T^{2} \)  |  1.43.am  | 
 | 47 |  \( 1 + 6 T + p T^{2} \)  |  1.47.g  | 
 | 53 |  \( 1 + 4 T + p T^{2} \)  |  1.53.e  | 
 | 59 |  \( 1 + 6 T + p T^{2} \)  |  1.59.g  | 
 | 61 |  \( 1 - 4 T + p T^{2} \)  |  1.61.ae  | 
 | 71 |  \( 1 - 2 T + p T^{2} \)  |  1.71.ac  | 
 | 73 |  \( 1 + 10 T + p T^{2} \)  |  1.73.k  | 
 | 79 |  \( 1 + 8 T + p T^{2} \)  |  1.79.i  | 
 | 83 |  \( 1 - 8 T + p T^{2} \)  |  1.83.ai  | 
 | 89 |  \( 1 + 6 T + p T^{2} \)  |  1.89.g  | 
 | 97 |  \( 1 - 14 T + p T^{2} \)  |  1.97.ao  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−13.27571977229115, −12.80494646429509, −12.64708020623945, −11.91361781894536, −11.38525999529000, −10.73644660860776, −10.43691663401831, −9.720449822053813, −9.503594825633976, −9.085501129521388, −8.626876317059256, −7.963468103929716, −7.619482975401559, −7.264820335822157, −6.683221556120393, −5.807389305249776, −5.467924434564504, −4.588189789263935, −4.455971566129002, −3.603023596371675, −3.256746533105341, −2.291363668694701, −1.877952203169992, −1.193861739982344, −0.2964417915368658, 
0.2964417915368658, 1.193861739982344, 1.877952203169992, 2.291363668694701, 3.256746533105341, 3.603023596371675, 4.455971566129002, 4.588189789263935, 5.467924434564504, 5.807389305249776, 6.683221556120393, 7.264820335822157, 7.619482975401559, 7.963468103929716, 8.626876317059256, 9.085501129521388, 9.503594825633976, 9.720449822053813, 10.43691663401831, 10.73644660860776, 11.38525999529000, 11.91361781894536, 12.64708020623945, 12.80494646429509, 13.27571977229115