Properties

Label 2-143650-1.1-c1-0-35
Degree $2$
Conductor $143650$
Sign $-1$
Analytic cond. $1147.05$
Root an. cond. $33.8681$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 3·7-s + 8-s − 3·9-s + 3·11-s − 3·14-s + 16-s + 17-s − 3·18-s + 3·22-s − 3·23-s − 3·28-s + 6·29-s − 4·31-s + 32-s + 34-s − 3·36-s − 4·37-s + 2·41-s + 43-s + 3·44-s − 3·46-s + 6·47-s + 2·49-s + 2·53-s − 3·56-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 1.13·7-s + 0.353·8-s − 9-s + 0.904·11-s − 0.801·14-s + 1/4·16-s + 0.242·17-s − 0.707·18-s + 0.639·22-s − 0.625·23-s − 0.566·28-s + 1.11·29-s − 0.718·31-s + 0.176·32-s + 0.171·34-s − 1/2·36-s − 0.657·37-s + 0.312·41-s + 0.152·43-s + 0.452·44-s − 0.442·46-s + 0.875·47-s + 2/7·49-s + 0.274·53-s − 0.400·56-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 143650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 143650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(143650\)    =    \(2 \cdot 5^{2} \cdot 13^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(1147.05\)
Root analytic conductor: \(33.8681\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 143650,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
5 \( 1 \)
13 \( 1 \)
17 \( 1 - T \)
good3 \( 1 + p T^{2} \) 1.3.a
7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 - 7 T + p T^{2} \) 1.61.ah
67 \( 1 + 3 T + p T^{2} \) 1.67.d
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 7 T + p T^{2} \) 1.83.h
89 \( 1 + 15 T + p T^{2} \) 1.89.p
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.92870155341362, −12.99205037093591, −12.76813455465214, −12.11068511487736, −11.94152586025826, −11.33780737273329, −10.84285428229080, −10.30169518343374, −9.778303484919876, −9.347604748590208, −8.687844286880968, −8.453340887024839, −7.585431781191399, −7.163519209360568, −6.547714675184726, −6.149432124743678, −5.800375330693658, −5.203699418159641, −4.528069676106058, −3.916738344603309, −3.469260177348592, −2.963139091039205, −2.436374838662288, −1.676904305574195, −0.8283194793552979, 0, 0.8283194793552979, 1.676904305574195, 2.436374838662288, 2.963139091039205, 3.469260177348592, 3.916738344603309, 4.528069676106058, 5.203699418159641, 5.800375330693658, 6.149432124743678, 6.547714675184726, 7.163519209360568, 7.585431781191399, 8.453340887024839, 8.687844286880968, 9.347604748590208, 9.778303484919876, 10.30169518343374, 10.84285428229080, 11.33780737273329, 11.94152586025826, 12.11068511487736, 12.76813455465214, 12.99205037093591, 13.92870155341362

Graph of the $Z$-function along the critical line