Properties

Label 2-142800-1.1-c1-0-152
Degree $2$
Conductor $142800$
Sign $-1$
Analytic cond. $1140.26$
Root an. cond. $33.7677$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 7-s + 9-s − 4·11-s + 2·13-s − 17-s − 4·19-s − 21-s + 8·23-s − 27-s + 6·29-s + 4·33-s + 2·37-s − 2·39-s + 10·41-s − 4·43-s + 49-s + 51-s − 6·53-s + 4·57-s + 4·59-s + 6·61-s + 63-s − 12·67-s − 8·69-s + 8·71-s + 6·73-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.377·7-s + 1/3·9-s − 1.20·11-s + 0.554·13-s − 0.242·17-s − 0.917·19-s − 0.218·21-s + 1.66·23-s − 0.192·27-s + 1.11·29-s + 0.696·33-s + 0.328·37-s − 0.320·39-s + 1.56·41-s − 0.609·43-s + 1/7·49-s + 0.140·51-s − 0.824·53-s + 0.529·57-s + 0.520·59-s + 0.768·61-s + 0.125·63-s − 1.46·67-s − 0.963·69-s + 0.949·71-s + 0.702·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 142800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 142800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(142800\)    =    \(2^{4} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(1140.26\)
Root analytic conductor: \(33.7677\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 142800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 - T \)
17 \( 1 + T \)
good11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.51691641159679, −13.01055504887555, −12.80631756170055, −12.23366444050223, −11.66303749369169, −11.01112717341951, −10.87684788113163, −10.51272835069732, −9.811265563584104, −9.345119140234102, −8.677208268400193, −8.273054297033438, −7.849667931860035, −7.169552036837435, −6.713930998665579, −6.259152039932048, −5.502141508828017, −5.298757073107374, −4.444962140690067, −4.385063496683856, −3.389704094512804, −2.762543221055064, −2.307505784698320, −1.412027178066493, −0.8323578324667972, 0, 0.8323578324667972, 1.412027178066493, 2.307505784698320, 2.762543221055064, 3.389704094512804, 4.385063496683856, 4.444962140690067, 5.298757073107374, 5.502141508828017, 6.259152039932048, 6.713930998665579, 7.169552036837435, 7.849667931860035, 8.273054297033438, 8.677208268400193, 9.345119140234102, 9.811265563584104, 10.51272835069732, 10.87684788113163, 11.01112717341951, 11.66303749369169, 12.23366444050223, 12.80631756170055, 13.01055504887555, 13.51691641159679

Graph of the $Z$-function along the critical line