Properties

Label 2-141570-1.1-c1-0-119
Degree $2$
Conductor $141570$
Sign $-1$
Analytic cond. $1130.44$
Root an. cond. $33.6220$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 5-s + 2·7-s + 8-s + 10-s − 13-s + 2·14-s + 16-s − 2·17-s + 20-s − 8·23-s + 25-s − 26-s + 2·28-s − 8·29-s + 6·31-s + 32-s − 2·34-s + 2·35-s + 40-s + 10·41-s + 8·43-s − 8·46-s − 3·49-s + 50-s − 52-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.447·5-s + 0.755·7-s + 0.353·8-s + 0.316·10-s − 0.277·13-s + 0.534·14-s + 1/4·16-s − 0.485·17-s + 0.223·20-s − 1.66·23-s + 1/5·25-s − 0.196·26-s + 0.377·28-s − 1.48·29-s + 1.07·31-s + 0.176·32-s − 0.342·34-s + 0.338·35-s + 0.158·40-s + 1.56·41-s + 1.21·43-s − 1.17·46-s − 3/7·49-s + 0.141·50-s − 0.138·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 141570 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 141570 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(141570\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(1130.44\)
Root analytic conductor: \(33.6220\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 141570,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 - T \)
11 \( 1 \)
13 \( 1 + T \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + 8 T + p T^{2} \) 1.29.i
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 + p T^{2} \) 1.37.a
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 16 T + p T^{2} \) 1.83.q
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.71105133669659, −13.21223508966390, −12.61217305481476, −12.40477722713645, −11.61792490334502, −11.38014188290692, −10.91734781692076, −10.32174578864755, −9.801281764479111, −9.447222080224227, −8.683692281337653, −8.247564196811125, −7.699522645639093, −7.259994157689201, −6.667457841545279, −6.048010638721989, −5.634522515905066, −5.265789172722952, −4.381783539126689, −4.238594035283658, −3.622462672586791, −2.623394967963376, −2.383207963739873, −1.718491888523806, −1.049201423291567, 0, 1.049201423291567, 1.718491888523806, 2.383207963739873, 2.623394967963376, 3.622462672586791, 4.238594035283658, 4.381783539126689, 5.265789172722952, 5.634522515905066, 6.048010638721989, 6.667457841545279, 7.259994157689201, 7.699522645639093, 8.247564196811125, 8.683692281337653, 9.447222080224227, 9.801281764479111, 10.32174578864755, 10.91734781692076, 11.38014188290692, 11.61792490334502, 12.40477722713645, 12.61217305481476, 13.21223508966390, 13.71105133669659

Graph of the $Z$-function along the critical line