Properties

Label 2-141120-1.1-c1-0-171
Degree $2$
Conductor $141120$
Sign $1$
Analytic cond. $1126.84$
Root an. cond. $33.5685$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 6·13-s − 2·17-s + 4·19-s − 4·23-s + 25-s + 6·29-s − 6·37-s − 2·41-s + 4·43-s + 8·47-s − 2·53-s + 12·59-s + 6·61-s + 6·65-s + 4·67-s + 12·71-s − 10·73-s − 8·79-s + 12·83-s − 2·85-s + 14·89-s + 4·95-s − 2·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  + 0.447·5-s + 1.66·13-s − 0.485·17-s + 0.917·19-s − 0.834·23-s + 1/5·25-s + 1.11·29-s − 0.986·37-s − 0.312·41-s + 0.609·43-s + 1.16·47-s − 0.274·53-s + 1.56·59-s + 0.768·61-s + 0.744·65-s + 0.488·67-s + 1.42·71-s − 1.17·73-s − 0.900·79-s + 1.31·83-s − 0.216·85-s + 1.48·89-s + 0.410·95-s − 0.203·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 141120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 141120 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(141120\)    =    \(2^{6} \cdot 3^{2} \cdot 5 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(1126.84\)
Root analytic conductor: \(33.5685\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 141120,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.645059184\)
\(L(\frac12)\) \(\approx\) \(3.645059184\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
7 \( 1 \)
good11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.38829497698747, −13.11948267940779, −12.39791662586909, −11.95719109440577, −11.51871639301206, −10.94859676471671, −10.52221796452478, −10.10801865958759, −9.530273152723993, −8.994420364894827, −8.552682384493418, −8.183127124026152, −7.524634023257588, −6.914949949615620, −6.408722638322814, −6.054384376301100, −5.360004550883497, −5.073636058988713, −4.088520568801257, −3.869454763453953, −3.163638782366828, −2.510791036611555, −1.876967451797419, −1.182828143743836, −0.6214580226434191, 0.6214580226434191, 1.182828143743836, 1.876967451797419, 2.510791036611555, 3.163638782366828, 3.869454763453953, 4.088520568801257, 5.073636058988713, 5.360004550883497, 6.054384376301100, 6.408722638322814, 6.914949949615620, 7.524634023257588, 8.183127124026152, 8.552682384493418, 8.994420364894827, 9.530273152723993, 10.10801865958759, 10.52221796452478, 10.94859676471671, 11.51871639301206, 11.95719109440577, 12.39791662586909, 13.11948267940779, 13.38829497698747

Graph of the $Z$-function along the critical line