Properties

Label 141120.mr
Number of curves $4$
Conductor $141120$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("mr1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 141120.mr have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(7\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 141120.mr do not have complex multiplication.

Modular form 141120.2.a.mr

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} + 6 q^{13} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 141120.mr

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
141120.mr1 141120jk3 \([0, 0, 0, -357415212, 2524908574384]\) \(898353183174324196/29899176238575\) \(168056348152820420940595200\) \([2]\) \(47185920\) \(3.8051\)  
141120.mr2 141120jk2 \([0, 0, 0, -54889212, -101864178416]\) \(13015144447800784/4341909875625\) \(6101217571044535511040000\) \([2, 2]\) \(23592960\) \(3.4585\)  
141120.mr3 141120jk1 \([0, 0, 0, -49376712, -133521363416]\) \(151591373397612544/32558203125\) \(2859408167691600000000\) \([2]\) \(11796480\) \(3.1119\) \(\Gamma_0(N)\)-optimal
141120.mr4 141120jk4 \([0, 0, 0, 159436788, -702577091216]\) \(79743193254623804/84085819746075\) \(-472626927417822919070515200\) \([2]\) \(47185920\) \(3.8051\)