Properties

Label 2-139650-1.1-c1-0-164
Degree $2$
Conductor $139650$
Sign $-1$
Analytic cond. $1115.11$
Root an. cond. $33.3932$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 6-s + 8-s + 9-s + 4·11-s − 12-s − 6·13-s + 16-s + 4·17-s + 18-s − 19-s + 4·22-s − 4·23-s − 24-s − 6·26-s − 27-s + 6·29-s + 6·31-s + 32-s − 4·33-s + 4·34-s + 36-s − 10·37-s − 38-s + 6·39-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.408·6-s + 0.353·8-s + 1/3·9-s + 1.20·11-s − 0.288·12-s − 1.66·13-s + 1/4·16-s + 0.970·17-s + 0.235·18-s − 0.229·19-s + 0.852·22-s − 0.834·23-s − 0.204·24-s − 1.17·26-s − 0.192·27-s + 1.11·29-s + 1.07·31-s + 0.176·32-s − 0.696·33-s + 0.685·34-s + 1/6·36-s − 1.64·37-s − 0.162·38-s + 0.960·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 139650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 139650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(139650\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(1115.11\)
Root analytic conductor: \(33.3932\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 139650,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 \)
19 \( 1 + T \)
good11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 - 8 T + p T^{2} \) 1.89.ai
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.66736661161958, −13.27960220654655, −12.29487368879095, −12.16664796171510, −11.99219847284517, −11.62716429500383, −10.65015341943870, −10.39573034695282, −9.911772599861025, −9.501231198400800, −8.780614702114294, −8.197335016178457, −7.669066261180282, −7.051857090784233, −6.673147768149152, −6.278415709934802, −5.589919463525711, −5.114338095389035, −4.642425269765814, −4.191995642679015, −3.461702943484848, −3.025878910661092, −2.185432007692730, −1.654741742636988, −0.9014733363542388, 0, 0.9014733363542388, 1.654741742636988, 2.185432007692730, 3.025878910661092, 3.461702943484848, 4.191995642679015, 4.642425269765814, 5.114338095389035, 5.589919463525711, 6.278415709934802, 6.673147768149152, 7.051857090784233, 7.669066261180282, 8.197335016178457, 8.780614702114294, 9.501231198400800, 9.911772599861025, 10.39573034695282, 10.65015341943870, 11.62716429500383, 11.99219847284517, 12.16664796171510, 12.29487368879095, 13.27960220654655, 13.66736661161958

Graph of the $Z$-function along the critical line