Properties

Label 2-137280-1.1-c1-0-124
Degree $2$
Conductor $137280$
Sign $-1$
Analytic cond. $1096.18$
Root an. cond. $33.1087$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s + 2·7-s + 9-s − 11-s + 13-s + 15-s − 4·17-s + 6·19-s − 2·21-s + 6·23-s + 25-s − 27-s − 8·29-s + 4·31-s + 33-s − 2·35-s + 2·37-s − 39-s − 6·41-s + 4·43-s − 45-s − 3·49-s + 4·51-s + 2·53-s + 55-s − 6·57-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s + 0.755·7-s + 1/3·9-s − 0.301·11-s + 0.277·13-s + 0.258·15-s − 0.970·17-s + 1.37·19-s − 0.436·21-s + 1.25·23-s + 1/5·25-s − 0.192·27-s − 1.48·29-s + 0.718·31-s + 0.174·33-s − 0.338·35-s + 0.328·37-s − 0.160·39-s − 0.937·41-s + 0.609·43-s − 0.149·45-s − 3/7·49-s + 0.560·51-s + 0.274·53-s + 0.134·55-s − 0.794·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 137280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 137280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(137280\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 11 \cdot 13\)
Sign: $-1$
Analytic conductor: \(1096.18\)
Root analytic conductor: \(33.1087\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 137280,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 + T \)
11 \( 1 + T \)
13 \( 1 - T \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 8 T + p T^{2} \) 1.29.i
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 16 T + p T^{2} \) 1.71.q
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.45099622722094, −13.23665451505324, −12.76514642027093, −12.11240216722121, −11.52998092149025, −11.33249806755735, −11.06844725965765, −10.29321714132760, −9.987482026400025, −9.157773970354903, −8.906098487743116, −8.269218550647894, −7.704123669428829, −7.280560771628767, −6.884194098775354, −6.209607320033081, −5.546775997097472, −5.213841911681162, −4.617131370419680, −4.215916784676618, −3.447389076754799, −2.939079618150641, −2.146452167568309, −1.436355337693911, −0.8513297524402985, 0, 0.8513297524402985, 1.436355337693911, 2.146452167568309, 2.939079618150641, 3.447389076754799, 4.215916784676618, 4.617131370419680, 5.213841911681162, 5.546775997097472, 6.209607320033081, 6.884194098775354, 7.280560771628767, 7.704123669428829, 8.269218550647894, 8.906098487743116, 9.157773970354903, 9.987482026400025, 10.29321714132760, 11.06844725965765, 11.33249806755735, 11.52998092149025, 12.11240216722121, 12.76514642027093, 13.23665451505324, 13.45099622722094

Graph of the $Z$-function along the critical line