Properties

Label 2-136242-1.1-c1-0-37
Degree $2$
Conductor $136242$
Sign $-1$
Analytic cond. $1087.89$
Root an. cond. $32.9832$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 3·7-s + 8-s + 3·11-s + 3·14-s + 16-s − 4·17-s + 19-s + 3·22-s − 8·23-s − 5·25-s + 3·28-s − 4·31-s + 32-s − 4·34-s − 6·37-s + 38-s + 8·41-s + 3·43-s + 3·44-s − 8·46-s + 12·47-s + 2·49-s − 5·50-s + 10·53-s + 3·56-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 1.13·7-s + 0.353·8-s + 0.904·11-s + 0.801·14-s + 1/4·16-s − 0.970·17-s + 0.229·19-s + 0.639·22-s − 1.66·23-s − 25-s + 0.566·28-s − 0.718·31-s + 0.176·32-s − 0.685·34-s − 0.986·37-s + 0.162·38-s + 1.24·41-s + 0.457·43-s + 0.452·44-s − 1.17·46-s + 1.75·47-s + 2/7·49-s − 0.707·50-s + 1.37·53-s + 0.400·56-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 136242 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 136242 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(136242\)    =    \(2 \cdot 3^{4} \cdot 29^{2}\)
Sign: $-1$
Analytic conductor: \(1087.89\)
Root analytic conductor: \(32.9832\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 136242,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
29 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 - 3 T + p T^{2} \) 1.7.ad
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 + 8 T + p T^{2} \) 1.23.i
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 8 T + p T^{2} \) 1.41.ai
43 \( 1 - 3 T + p T^{2} \) 1.43.ad
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 - 9 T + p T^{2} \) 1.61.aj
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 + 3 T + p T^{2} \) 1.71.d
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.66564629086180, −13.44486958850838, −12.62173658040145, −12.09099956095976, −11.93959678509984, −11.34576096063301, −10.89691374173576, −10.55740864237580, −9.788252121524692, −9.343943436103603, −8.763300885803709, −8.234337156181204, −7.793086889699789, −7.172679099803638, −6.824119415717023, −6.049754781612599, −5.659539390647231, −5.261567124437567, −4.331348668793500, −4.140160567144275, −3.805339612461198, −2.796737764456794, −2.159698583246993, −1.767534329612956, −1.066943217546104, 0, 1.066943217546104, 1.767534329612956, 2.159698583246993, 2.796737764456794, 3.805339612461198, 4.140160567144275, 4.331348668793500, 5.261567124437567, 5.659539390647231, 6.049754781612599, 6.824119415717023, 7.172679099803638, 7.793086889699789, 8.234337156181204, 8.763300885803709, 9.343943436103603, 9.788252121524692, 10.55740864237580, 10.89691374173576, 11.34576096063301, 11.93959678509984, 12.09099956095976, 12.62173658040145, 13.44486958850838, 13.66564629086180

Graph of the $Z$-function along the critical line