Properties

Label 2-13520-1.1-c1-0-1
Degree $2$
Conductor $13520$
Sign $1$
Analytic cond. $107.957$
Root an. cond. $10.3902$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 5-s − 4·7-s + 9-s − 6·11-s − 2·15-s − 6·17-s + 2·19-s − 8·21-s − 6·23-s + 25-s − 4·27-s − 6·29-s + 2·31-s − 12·33-s + 4·35-s − 2·37-s + 6·41-s − 2·43-s − 45-s − 12·47-s + 9·49-s − 12·51-s + 6·53-s + 6·55-s + 4·57-s + 6·59-s + ⋯
L(s)  = 1  + 1.15·3-s − 0.447·5-s − 1.51·7-s + 1/3·9-s − 1.80·11-s − 0.516·15-s − 1.45·17-s + 0.458·19-s − 1.74·21-s − 1.25·23-s + 1/5·25-s − 0.769·27-s − 1.11·29-s + 0.359·31-s − 2.08·33-s + 0.676·35-s − 0.328·37-s + 0.937·41-s − 0.304·43-s − 0.149·45-s − 1.75·47-s + 9/7·49-s − 1.68·51-s + 0.824·53-s + 0.809·55-s + 0.529·57-s + 0.781·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 13520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(13520\)    =    \(2^{4} \cdot 5 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(107.957\)
Root analytic conductor: \(10.3902\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 13520,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5547104566\)
\(L(\frac12)\) \(\approx\) \(0.5547104566\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 + T \)
13 \( 1 \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + 6 T + p T^{2} \) 1.11.g
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.97796826397965, −15.75657500637616, −15.11246101747413, −14.65596169738442, −13.70467893330868, −13.41698099358013, −13.02760374536561, −12.50118412864740, −11.66457960435713, −11.01640435078791, −10.31613438318567, −9.781675953307410, −9.299256768372595, −8.596407405373682, −8.089124401671059, −7.537655389370011, −6.918338291258120, −6.145404790211801, −5.488804064235576, −4.594502268440532, −3.740479446045345, −3.273007888932460, −2.540152697631834, −2.094808624907436, −0.2808779277031546, 0.2808779277031546, 2.094808624907436, 2.540152697631834, 3.273007888932460, 3.740479446045345, 4.594502268440532, 5.488804064235576, 6.145404790211801, 6.918338291258120, 7.537655389370011, 8.089124401671059, 8.596407405373682, 9.299256768372595, 9.781675953307410, 10.31613438318567, 11.01640435078791, 11.66457960435713, 12.50118412864740, 13.02760374536561, 13.41698099358013, 13.70467893330868, 14.65596169738442, 15.11246101747413, 15.75657500637616, 15.97796826397965

Graph of the $Z$-function along the critical line