Properties

Label 2-134064-1.1-c1-0-135
Degree $2$
Conductor $134064$
Sign $-1$
Analytic cond. $1070.50$
Root an. cond. $32.7185$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·11-s + 4·13-s + 19-s + 6·23-s − 5·25-s − 6·29-s − 4·31-s + 2·37-s − 6·41-s − 8·43-s − 12·47-s − 6·53-s + 12·59-s + 10·61-s − 14·67-s − 12·71-s − 2·73-s + 10·79-s − 12·83-s + 18·89-s − 8·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  + 1.80·11-s + 1.10·13-s + 0.229·19-s + 1.25·23-s − 25-s − 1.11·29-s − 0.718·31-s + 0.328·37-s − 0.937·41-s − 1.21·43-s − 1.75·47-s − 0.824·53-s + 1.56·59-s + 1.28·61-s − 1.71·67-s − 1.42·71-s − 0.234·73-s + 1.12·79-s − 1.31·83-s + 1.90·89-s − 0.812·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 134064 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 134064 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(134064\)    =    \(2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(1070.50\)
Root analytic conductor: \(32.7185\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 134064,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
19 \( 1 - T \)
good5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + p T^{2} \) 1.17.a
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.52714376993621, −13.16810310293013, −13.02143099418106, −12.02323565829346, −11.72508817805789, −11.41668387293917, −10.92970384708117, −10.34550970181127, −9.620322501030031, −9.396480309389631, −8.862151771084740, −8.400126925656587, −7.899760419793441, −7.117295832095659, −6.779357173460880, −6.344750540513475, −5.703853049009603, −5.286903151386506, −4.478002427098633, −4.017306211378040, −3.369497330818449, −3.211693446992163, −1.953526569819023, −1.588710551080328, −1.003762910100083, 0, 1.003762910100083, 1.588710551080328, 1.953526569819023, 3.211693446992163, 3.369497330818449, 4.017306211378040, 4.478002427098633, 5.286903151386506, 5.703853049009603, 6.344750540513475, 6.779357173460880, 7.117295832095659, 7.899760419793441, 8.400126925656587, 8.862151771084740, 9.396480309389631, 9.620322501030031, 10.34550970181127, 10.92970384708117, 11.41668387293917, 11.72508817805789, 12.02323565829346, 13.02143099418106, 13.16810310293013, 13.52714376993621

Graph of the $Z$-function along the critical line