Properties

Label 2-364e2-1.1-c1-0-86
Degree $2$
Conductor $132496$
Sign $-1$
Analytic cond. $1057.98$
Root an. cond. $32.5266$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 3·5-s + 9-s − 6·15-s − 3·17-s + 2·19-s + 6·23-s + 4·25-s + 4·27-s + 9·29-s + 2·31-s − 7·37-s − 3·41-s + 4·43-s + 3·45-s − 6·47-s + 6·51-s + 9·53-s − 4·57-s − 5·61-s − 2·67-s − 12·69-s + 6·71-s + 73-s − 8·75-s + 4·79-s − 11·81-s + ⋯
L(s)  = 1  − 1.15·3-s + 1.34·5-s + 1/3·9-s − 1.54·15-s − 0.727·17-s + 0.458·19-s + 1.25·23-s + 4/5·25-s + 0.769·27-s + 1.67·29-s + 0.359·31-s − 1.15·37-s − 0.468·41-s + 0.609·43-s + 0.447·45-s − 0.875·47-s + 0.840·51-s + 1.23·53-s − 0.529·57-s − 0.640·61-s − 0.244·67-s − 1.44·69-s + 0.712·71-s + 0.117·73-s − 0.923·75-s + 0.450·79-s − 1.22·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 132496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 132496 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(132496\)    =    \(2^{4} \cdot 7^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(1057.98\)
Root analytic conductor: \(32.5266\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 132496,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 \)
13 \( 1 \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
5 \( 1 - 3 T + p T^{2} \) 1.5.ad
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - T + p T^{2} \) 1.73.ab
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.71418700258189, −13.31435442464921, −12.68968282115113, −12.12636033850394, −11.93630066254193, −11.19573951471614, −10.72143930288949, −10.53473981065267, −9.847681846697457, −9.517191383985625, −8.825538777090633, −8.535793990151118, −7.785557341189690, −6.922399141866181, −6.645545394212183, −6.355906999172859, −5.520937051195102, −5.392923789225940, −4.818137080781502, −4.327422516851255, −3.362545119122971, −2.752968089217882, −2.237043482026894, −1.369333419513959, −0.9367026291153257, 0, 0.9367026291153257, 1.369333419513959, 2.237043482026894, 2.752968089217882, 3.362545119122971, 4.327422516851255, 4.818137080781502, 5.392923789225940, 5.520937051195102, 6.355906999172859, 6.645545394212183, 6.922399141866181, 7.785557341189690, 8.535793990151118, 8.825538777090633, 9.517191383985625, 9.847681846697457, 10.53473981065267, 10.72143930288949, 11.19573951471614, 11.93630066254193, 12.12636033850394, 12.68968282115113, 13.31435442464921, 13.71418700258189

Graph of the $Z$-function along the critical line