Properties

Label 2-129437-1.1-c1-0-2
Degree $2$
Conductor $129437$
Sign $1$
Analytic cond. $1033.55$
Root an. cond. $32.1490$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 2·3-s − 4-s − 2·5-s − 2·6-s + 7-s − 3·8-s + 9-s − 2·10-s − 11-s + 2·12-s − 4·13-s + 14-s + 4·15-s − 16-s − 4·17-s + 18-s + 2·20-s − 2·21-s − 22-s − 4·23-s + 6·24-s − 25-s − 4·26-s + 4·27-s − 28-s + 6·29-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.15·3-s − 1/2·4-s − 0.894·5-s − 0.816·6-s + 0.377·7-s − 1.06·8-s + 1/3·9-s − 0.632·10-s − 0.301·11-s + 0.577·12-s − 1.10·13-s + 0.267·14-s + 1.03·15-s − 1/4·16-s − 0.970·17-s + 0.235·18-s + 0.447·20-s − 0.436·21-s − 0.213·22-s − 0.834·23-s + 1.22·24-s − 1/5·25-s − 0.784·26-s + 0.769·27-s − 0.188·28-s + 1.11·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 129437 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 129437 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(129437\)    =    \(7 \cdot 11 \cdot 41^{2}\)
Sign: $1$
Analytic conductor: \(1033.55\)
Root analytic conductor: \(32.1490\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 129437,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.242338002\)
\(L(\frac12)\) \(\approx\) \(1.242338002\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad7 \( 1 - T \)
11 \( 1 + T \)
41 \( 1 \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
3 \( 1 + 2 T + p T^{2} \) 1.3.c
5 \( 1 + 2 T + p T^{2} \) 1.5.c
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 + 6 T + p T^{2} \) 1.37.g
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 - 10 T + p T^{2} \) 1.47.ak
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 2 T + p T^{2} \) 1.59.ac
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.66333028652122, −12.78134359902578, −12.38805445310821, −12.09667479352278, −11.69298643308291, −11.37064812215586, −10.65010556235270, −10.20866357969419, −9.844403202810306, −8.911731488890208, −8.643798573708511, −8.102273492300362, −7.399506280981107, −7.084672625927840, −6.149206966120866, −6.058404872313416, −5.342527948466537, −4.769559312275262, −4.471401826523330, −4.151940434369713, −3.302488000715570, −2.647123736491947, −2.094431143386409, −0.6618253536142335, −0.5440966486071980, 0.5440966486071980, 0.6618253536142335, 2.094431143386409, 2.647123736491947, 3.302488000715570, 4.151940434369713, 4.471401826523330, 4.769559312275262, 5.342527948466537, 6.058404872313416, 6.149206966120866, 7.084672625927840, 7.399506280981107, 8.102273492300362, 8.643798573708511, 8.911731488890208, 9.844403202810306, 10.20866357969419, 10.65010556235270, 11.37064812215586, 11.69298643308291, 12.09667479352278, 12.38805445310821, 12.78134359902578, 13.66333028652122

Graph of the $Z$-function along the critical line