Properties

Label 2-124800-1.1-c1-0-5
Degree $2$
Conductor $124800$
Sign $1$
Analytic cond. $996.533$
Root an. cond. $31.5679$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 3·7-s + 9-s + 5·11-s + 13-s − 7·17-s − 4·19-s + 3·21-s − 4·23-s − 27-s + 9·29-s + 5·31-s − 5·33-s − 10·37-s − 39-s + 4·41-s + 2·43-s − 3·47-s + 2·49-s + 7·51-s + 3·53-s + 4·57-s − 59-s + 61-s − 3·63-s − 5·67-s + 4·69-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.13·7-s + 1/3·9-s + 1.50·11-s + 0.277·13-s − 1.69·17-s − 0.917·19-s + 0.654·21-s − 0.834·23-s − 0.192·27-s + 1.67·29-s + 0.898·31-s − 0.870·33-s − 1.64·37-s − 0.160·39-s + 0.624·41-s + 0.304·43-s − 0.437·47-s + 2/7·49-s + 0.980·51-s + 0.412·53-s + 0.529·57-s − 0.130·59-s + 0.128·61-s − 0.377·63-s − 0.610·67-s + 0.481·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 124800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 124800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(124800\)    =    \(2^{7} \cdot 3 \cdot 5^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(996.533\)
Root analytic conductor: \(31.5679\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 124800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7883461742\)
\(L(\frac12)\) \(\approx\) \(0.7883461742\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
13 \( 1 - T \)
good7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 - 5 T + p T^{2} \) 1.11.af
17 \( 1 + 7 T + p T^{2} \) 1.17.h
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 + T + p T^{2} \) 1.59.b
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 + 5 T + p T^{2} \) 1.67.f
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 15 T + p T^{2} \) 1.83.p
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + p T^{2} \) 1.97.a
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.61787161670311, −12.88594599847727, −12.58231375051044, −12.07081815117843, −11.65073345360308, −11.17334391869289, −10.59768917486683, −10.11925269152957, −9.754556055884176, −9.070667853566056, −8.670098332251702, −8.374562686380173, −7.395207137688828, −6.743471370891938, −6.542115494968351, −6.265184367276875, −5.657108724427824, −4.788510757856732, −4.221005095062367, −4.035998381034836, −3.215833538685670, −2.583829066381601, −1.855444426048393, −1.169938359782658, −0.2967426254350794, 0.2967426254350794, 1.169938359782658, 1.855444426048393, 2.583829066381601, 3.215833538685670, 4.035998381034836, 4.221005095062367, 4.788510757856732, 5.657108724427824, 6.265184367276875, 6.542115494968351, 6.743471370891938, 7.395207137688828, 8.374562686380173, 8.670098332251702, 9.070667853566056, 9.754556055884176, 10.11925269152957, 10.59768917486683, 11.17334391869289, 11.65073345360308, 12.07081815117843, 12.58231375051044, 12.88594599847727, 13.61787161670311

Graph of the $Z$-function along the critical line