Properties

Label 2-124800-1.1-c1-0-116
Degree $2$
Conductor $124800$
Sign $-1$
Analytic cond. $996.533$
Root an. cond. $31.5679$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 9-s + 2·11-s − 13-s + 27-s − 8·29-s + 2·33-s + 6·37-s − 39-s + 6·41-s − 4·43-s + 10·47-s − 7·49-s − 2·53-s + 6·59-s + 6·61-s − 4·67-s + 12·71-s − 4·73-s − 12·79-s + 81-s − 4·83-s − 8·87-s − 6·89-s − 4·97-s + 2·99-s + 101-s + ⋯
L(s)  = 1  + 0.577·3-s + 1/3·9-s + 0.603·11-s − 0.277·13-s + 0.192·27-s − 1.48·29-s + 0.348·33-s + 0.986·37-s − 0.160·39-s + 0.937·41-s − 0.609·43-s + 1.45·47-s − 49-s − 0.274·53-s + 0.781·59-s + 0.768·61-s − 0.488·67-s + 1.42·71-s − 0.468·73-s − 1.35·79-s + 1/9·81-s − 0.439·83-s − 0.857·87-s − 0.635·89-s − 0.406·97-s + 0.201·99-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 124800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 124800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(124800\)    =    \(2^{7} \cdot 3 \cdot 5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(996.533\)
Root analytic conductor: \(31.5679\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 124800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
13 \( 1 + T \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 8 T + p T^{2} \) 1.29.i
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 10 T + p T^{2} \) 1.47.ak
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 4 T + p T^{2} \) 1.97.e
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.82763423875072, −13.19135080263606, −12.91084600462314, −12.43186418929048, −11.81855267066405, −11.27693327958828, −11.04452940516047, −10.19238755061471, −9.868739768597299, −9.310309831169833, −8.965535709729927, −8.412655820677875, −7.815370204459018, −7.409480264328451, −6.924305297259792, −6.295199373848675, −5.784908495608775, −5.193263172991251, −4.546165700833866, −3.930202386734330, −3.634345446006005, −2.774867012897542, −2.346680369807180, −1.609858749622101, −0.9763523449236468, 0, 0.9763523449236468, 1.609858749622101, 2.346680369807180, 2.774867012897542, 3.634345446006005, 3.930202386734330, 4.546165700833866, 5.193263172991251, 5.784908495608775, 6.295199373848675, 6.924305297259792, 7.409480264328451, 7.815370204459018, 8.412655820677875, 8.965535709729927, 9.310309831169833, 9.868739768597299, 10.19238755061471, 11.04452940516047, 11.27693327958828, 11.81855267066405, 12.43186418929048, 12.91084600462314, 13.19135080263606, 13.82763423875072

Graph of the $Z$-function along the critical line