| L(s)  = 1 | + 3-s     + 5-s     − 4·7-s     + 9-s         + 13-s     + 15-s     − 2·17-s     + 4·19-s     − 4·21-s     − 8·23-s     + 25-s     + 27-s     − 2·29-s     + 8·31-s         − 4·35-s     − 2·37-s     + 39-s     − 6·41-s     + 12·43-s     + 45-s         + 9·49-s     − 2·51-s     − 10·53-s         + 4·57-s         + 10·61-s     − 4·63-s     + 65-s  + ⋯ | 
| L(s)  = 1 | + 0.577·3-s     + 0.447·5-s     − 1.51·7-s     + 1/3·9-s         + 0.277·13-s     + 0.258·15-s     − 0.485·17-s     + 0.917·19-s     − 0.872·21-s     − 1.66·23-s     + 1/5·25-s     + 0.192·27-s     − 0.371·29-s     + 1.43·31-s         − 0.676·35-s     − 0.328·37-s     + 0.160·39-s     − 0.937·41-s     + 1.82·43-s     + 0.149·45-s         + 9/7·49-s     − 0.280·51-s     − 1.37·53-s         + 0.529·57-s         + 1.28·61-s     − 0.503·63-s     + 0.124·65-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 12480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 12480 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(=\) | \(0\) | 
    
      | \(L(\frac12)\) | \(=\) | \(0\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 | \( 1 \) |  | 
|  | 3 | \( 1 - T \) |  | 
|  | 5 | \( 1 - T \) |  | 
|  | 13 | \( 1 - T \) |  | 
| good | 7 | \( 1 + 4 T + p T^{2} \) | 1.7.e | 
|  | 11 | \( 1 + p T^{2} \) | 1.11.a | 
|  | 17 | \( 1 + 2 T + p T^{2} \) | 1.17.c | 
|  | 19 | \( 1 - 4 T + p T^{2} \) | 1.19.ae | 
|  | 23 | \( 1 + 8 T + p T^{2} \) | 1.23.i | 
|  | 29 | \( 1 + 2 T + p T^{2} \) | 1.29.c | 
|  | 31 | \( 1 - 8 T + p T^{2} \) | 1.31.ai | 
|  | 37 | \( 1 + 2 T + p T^{2} \) | 1.37.c | 
|  | 41 | \( 1 + 6 T + p T^{2} \) | 1.41.g | 
|  | 43 | \( 1 - 12 T + p T^{2} \) | 1.43.am | 
|  | 47 | \( 1 + p T^{2} \) | 1.47.a | 
|  | 53 | \( 1 + 10 T + p T^{2} \) | 1.53.k | 
|  | 59 | \( 1 + p T^{2} \) | 1.59.a | 
|  | 61 | \( 1 - 10 T + p T^{2} \) | 1.61.ak | 
|  | 67 | \( 1 + 4 T + p T^{2} \) | 1.67.e | 
|  | 71 | \( 1 - 16 T + p T^{2} \) | 1.71.aq | 
|  | 73 | \( 1 + 6 T + p T^{2} \) | 1.73.g | 
|  | 79 | \( 1 - 8 T + p T^{2} \) | 1.79.ai | 
|  | 83 | \( 1 + 4 T + p T^{2} \) | 1.83.e | 
|  | 89 | \( 1 + 14 T + p T^{2} \) | 1.89.o | 
|  | 97 | \( 1 + 6 T + p T^{2} \) | 1.97.g | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−16.23176922031963, −16.10181003369292, −15.61410409853885, −14.97602166545952, −14.04720115697401, −13.82700255340200, −13.35757993837136, −12.61425169998317, −12.28125171910284, −11.50568504070561, −10.69661491192813, −10.03600635705624, −9.631878531089523, −9.254993672469535, −8.410788387947862, −7.891637342434768, −7.025030449502729, −6.495621821995770, −5.969673268479365, −5.234151955742182, −4.191454584305073, −3.658292831884688, −2.876899965339973, −2.307090053138652, −1.226592771773968, 0, 
1.226592771773968, 2.307090053138652, 2.876899965339973, 3.658292831884688, 4.191454584305073, 5.234151955742182, 5.969673268479365, 6.495621821995770, 7.025030449502729, 7.891637342434768, 8.410788387947862, 9.254993672469535, 9.631878531089523, 10.03600635705624, 10.69661491192813, 11.50568504070561, 12.28125171910284, 12.61425169998317, 13.35757993837136, 13.82700255340200, 14.04720115697401, 14.97602166545952, 15.61410409853885, 16.10181003369292, 16.23176922031963
