Properties

Label 2-123840-1.1-c1-0-148
Degree $2$
Conductor $123840$
Sign $1$
Analytic cond. $988.867$
Root an. cond. $31.4462$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 4·7-s − 2·13-s − 2·17-s − 4·19-s + 25-s − 6·29-s + 8·31-s + 4·35-s + 6·37-s − 10·41-s + 43-s + 9·49-s − 6·53-s − 2·61-s + 2·65-s − 12·67-s + 8·71-s − 2·73-s − 8·79-s − 4·83-s + 2·85-s + 6·89-s + 8·91-s + 4·95-s + 10·97-s + 101-s + ⋯
L(s)  = 1  − 0.447·5-s − 1.51·7-s − 0.554·13-s − 0.485·17-s − 0.917·19-s + 1/5·25-s − 1.11·29-s + 1.43·31-s + 0.676·35-s + 0.986·37-s − 1.56·41-s + 0.152·43-s + 9/7·49-s − 0.824·53-s − 0.256·61-s + 0.248·65-s − 1.46·67-s + 0.949·71-s − 0.234·73-s − 0.900·79-s − 0.439·83-s + 0.216·85-s + 0.635·89-s + 0.838·91-s + 0.410·95-s + 1.01·97-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 123840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 123840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(123840\)    =    \(2^{6} \cdot 3^{2} \cdot 5 \cdot 43\)
Sign: $1$
Analytic conductor: \(988.867\)
Root analytic conductor: \(31.4462\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 123840,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
43 \( 1 - T \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 10 T + p T^{2} \) 1.41.k
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.83379344412224, −13.42822830108081, −13.06304297355426, −12.59934784177682, −12.14242629533133, −11.69931479772779, −11.11528632501451, −10.57173028451603, −10.09847828944040, −9.658532877696353, −9.191092847588718, −8.704481271597620, −8.085314693585033, −7.626514850439969, −6.942136349528516, −6.581967762302291, −6.178921470933549, −5.559567190415269, −4.822885001743122, −4.302814652822397, −3.800074302271253, −3.127969955110284, −2.711344576896225, −2.043877683945854, −1.133183121356829, 0, 0, 1.133183121356829, 2.043877683945854, 2.711344576896225, 3.127969955110284, 3.800074302271253, 4.302814652822397, 4.822885001743122, 5.559567190415269, 6.178921470933549, 6.581967762302291, 6.942136349528516, 7.626514850439969, 8.085314693585033, 8.704481271597620, 9.191092847588718, 9.658532877696353, 10.09847828944040, 10.57173028451603, 11.11528632501451, 11.69931479772779, 12.14242629533133, 12.59934784177682, 13.06304297355426, 13.42822830108081, 13.83379344412224

Graph of the $Z$-function along the critical line