Properties

Label 2-123200-1.1-c1-0-19
Degree $2$
Conductor $123200$
Sign $1$
Analytic cond. $983.756$
Root an. cond. $31.3649$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7-s − 3·9-s − 11-s + 2·13-s − 2·17-s − 8·23-s + 2·29-s + 8·31-s − 2·37-s + 10·41-s − 4·43-s + 8·47-s + 49-s + 6·53-s − 10·61-s + 3·63-s + 12·67-s − 16·71-s + 14·73-s + 77-s + 9·81-s − 6·89-s − 2·91-s − 10·97-s + 3·99-s + 101-s + 103-s + ⋯
L(s)  = 1  − 0.377·7-s − 9-s − 0.301·11-s + 0.554·13-s − 0.485·17-s − 1.66·23-s + 0.371·29-s + 1.43·31-s − 0.328·37-s + 1.56·41-s − 0.609·43-s + 1.16·47-s + 1/7·49-s + 0.824·53-s − 1.28·61-s + 0.377·63-s + 1.46·67-s − 1.89·71-s + 1.63·73-s + 0.113·77-s + 81-s − 0.635·89-s − 0.209·91-s − 1.01·97-s + 0.301·99-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 123200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 123200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(123200\)    =    \(2^{6} \cdot 5^{2} \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(983.756\)
Root analytic conductor: \(31.3649\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 123200,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.281370738\)
\(L(\frac12)\) \(\approx\) \(1.281370738\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 + T \)
11 \( 1 + T \)
good3 \( 1 + p T^{2} \) 1.3.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 16 T + p T^{2} \) 1.71.q
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.64694757163457, −13.16452866097857, −12.43008696464831, −12.12156461487859, −11.69348307199507, −11.01789228974530, −10.75858900180253, −10.09599994855953, −9.717115648309749, −9.073599512969937, −8.600083797814461, −8.172409635988761, −7.753952413101823, −7.040115058429453, −6.408608334493118, −6.055380684479780, −5.614460468102487, −4.981824482516064, −4.202558489818999, −3.915712062707340, −3.068925786624003, −2.609552474464280, −2.087422537693130, −1.137002454932159, −0.3661765325761320, 0.3661765325761320, 1.137002454932159, 2.087422537693130, 2.609552474464280, 3.068925786624003, 3.915712062707340, 4.202558489818999, 4.981824482516064, 5.614460468102487, 6.055380684479780, 6.408608334493118, 7.040115058429453, 7.753952413101823, 8.172409635988761, 8.600083797814461, 9.073599512969937, 9.717115648309749, 10.09599994855953, 10.75858900180253, 11.01789228974530, 11.69348307199507, 12.12156461487859, 12.43008696464831, 13.16452866097857, 13.64694757163457

Graph of the $Z$-function along the critical line