Properties

Label 2-122694-1.1-c1-0-69
Degree $2$
Conductor $122694$
Sign $-1$
Analytic cond. $979.716$
Root an. cond. $31.3004$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s + 2·5-s − 6-s + 8-s + 9-s + 2·10-s − 12-s − 2·15-s + 16-s − 6·17-s + 18-s + 2·20-s + 4·23-s − 24-s − 25-s − 27-s − 6·29-s − 2·30-s − 4·31-s + 32-s − 6·34-s + 36-s − 2·37-s + 2·40-s + 10·41-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.894·5-s − 0.408·6-s + 0.353·8-s + 1/3·9-s + 0.632·10-s − 0.288·12-s − 0.516·15-s + 1/4·16-s − 1.45·17-s + 0.235·18-s + 0.447·20-s + 0.834·23-s − 0.204·24-s − 1/5·25-s − 0.192·27-s − 1.11·29-s − 0.365·30-s − 0.718·31-s + 0.176·32-s − 1.02·34-s + 1/6·36-s − 0.328·37-s + 0.316·40-s + 1.56·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 122694 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 122694 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(122694\)    =    \(2 \cdot 3 \cdot 11^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(979.716\)
Root analytic conductor: \(31.3004\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 122694,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
11 \( 1 \)
13 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + p T^{2} \) 1.7.a
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.62355335779671, −13.27596180674520, −12.87146404637624, −12.52695308782715, −11.91099952372427, −11.16674516723198, −10.99737257554123, −10.74276735260341, −9.840010716662887, −9.315673777243143, −9.267589939794968, −8.288527107423575, −7.767791688140852, −7.148679771962385, −6.503107422929584, −6.410161496635615, −5.624407810888069, −5.300688490298640, −4.743280607248901, −4.189400317945676, −3.586970750741337, −2.902504147737629, −2.046915405620275, −1.917595643835461, −0.9393053600205015, 0, 0.9393053600205015, 1.917595643835461, 2.046915405620275, 2.902504147737629, 3.586970750741337, 4.189400317945676, 4.743280607248901, 5.300688490298640, 5.624407810888069, 6.410161496635615, 6.503107422929584, 7.148679771962385, 7.767791688140852, 8.288527107423575, 9.267589939794968, 9.315673777243143, 9.840010716662887, 10.74276735260341, 10.99737257554123, 11.16674516723198, 11.91099952372427, 12.52695308782715, 12.87146404637624, 13.27596180674520, 13.62355335779671

Graph of the $Z$-function along the critical line