Properties

Label 2-122304-1.1-c1-0-27
Degree $2$
Conductor $122304$
Sign $1$
Analytic cond. $976.602$
Root an. cond. $31.2506$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·5-s + 9-s − 4·11-s + 13-s + 2·15-s − 2·17-s + 4·19-s − 25-s − 27-s + 2·29-s + 4·33-s + 2·37-s − 39-s + 6·41-s + 4·43-s − 2·45-s − 8·47-s + 2·51-s + 10·53-s + 8·55-s − 4·57-s + 4·59-s − 2·61-s − 2·65-s − 4·67-s − 2·73-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.894·5-s + 1/3·9-s − 1.20·11-s + 0.277·13-s + 0.516·15-s − 0.485·17-s + 0.917·19-s − 1/5·25-s − 0.192·27-s + 0.371·29-s + 0.696·33-s + 0.328·37-s − 0.160·39-s + 0.937·41-s + 0.609·43-s − 0.298·45-s − 1.16·47-s + 0.280·51-s + 1.37·53-s + 1.07·55-s − 0.529·57-s + 0.520·59-s − 0.256·61-s − 0.248·65-s − 0.488·67-s − 0.234·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 122304 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 122304 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(122304\)    =    \(2^{6} \cdot 3 \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(976.602\)
Root analytic conductor: \(31.2506\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 122304,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.034919576\)
\(L(\frac12)\) \(\approx\) \(1.034919576\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 \)
13 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 + 4 T + p T^{2} \) 1.11.e
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.50767927408442, −13.04622273287353, −12.50481384262920, −12.06316321474279, −11.58015910827378, −11.16840005156831, −10.77006333990519, −10.21735883585554, −9.761160903134983, −9.163940897986748, −8.520774007252112, −8.064938708540131, −7.534707307895994, −7.266850035260321, −6.555798012911618, −5.969703853954974, −5.456568841278317, −4.969710441685193, −4.358842254632306, −3.917841703995996, −3.190903613041147, −2.658133529937827, −1.926832447134213, −0.9979049025063089, −0.3815350931011748, 0.3815350931011748, 0.9979049025063089, 1.926832447134213, 2.658133529937827, 3.190903613041147, 3.917841703995996, 4.358842254632306, 4.969710441685193, 5.456568841278317, 5.969703853954974, 6.555798012911618, 7.266850035260321, 7.534707307895994, 8.064938708540131, 8.520774007252112, 9.163940897986748, 9.761160903134983, 10.21735883585554, 10.77006333990519, 11.16840005156831, 11.58015910827378, 12.06316321474279, 12.50481384262920, 13.04622273287353, 13.50767927408442

Graph of the $Z$-function along the critical line