Properties

Label 2-121380-1.1-c1-0-9
Degree $2$
Conductor $121380$
Sign $-1$
Analytic cond. $969.224$
Root an. cond. $31.1323$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s − 7-s + 9-s − 6·11-s − 4·13-s − 15-s + 2·19-s + 21-s + 25-s − 27-s − 6·29-s + 10·31-s + 6·33-s − 35-s − 2·37-s + 4·39-s + 6·41-s − 4·43-s + 45-s + 49-s − 12·53-s − 6·55-s − 2·57-s − 14·61-s − 63-s − 4·65-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s − 0.377·7-s + 1/3·9-s − 1.80·11-s − 1.10·13-s − 0.258·15-s + 0.458·19-s + 0.218·21-s + 1/5·25-s − 0.192·27-s − 1.11·29-s + 1.79·31-s + 1.04·33-s − 0.169·35-s − 0.328·37-s + 0.640·39-s + 0.937·41-s − 0.609·43-s + 0.149·45-s + 1/7·49-s − 1.64·53-s − 0.809·55-s − 0.264·57-s − 1.79·61-s − 0.125·63-s − 0.496·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 121380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 121380 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(121380\)    =    \(2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(969.224\)
Root analytic conductor: \(31.1323\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 121380,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 + T \)
17 \( 1 \)
good11 \( 1 + 6 T + p T^{2} \) 1.11.g
13 \( 1 + 4 T + p T^{2} \) 1.13.e
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 16 T + p T^{2} \) 1.97.aq
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.58732944988135, −13.33363235957278, −12.84104771291891, −12.27909789720312, −12.06817889367567, −11.30935248490078, −10.77511472449391, −10.47045355785602, −9.833009186119678, −9.660666779418086, −9.046450306597025, −8.258798109773194, −7.729000381258833, −7.466371994828787, −6.813065830921071, −6.162682296941546, −5.800919552275475, −5.136285303464024, −4.846357557248881, −4.321053935979463, −3.271508983983105, −2.899946629123645, −2.289559891131890, −1.647054009313215, −0.6439481210747235, 0, 0.6439481210747235, 1.647054009313215, 2.289559891131890, 2.899946629123645, 3.271508983983105, 4.321053935979463, 4.846357557248881, 5.136285303464024, 5.800919552275475, 6.162682296941546, 6.813065830921071, 7.466371994828787, 7.729000381258833, 8.258798109773194, 9.046450306597025, 9.660666779418086, 9.833009186119678, 10.47045355785602, 10.77511472449391, 11.30935248490078, 12.06817889367567, 12.27909789720312, 12.84104771291891, 13.33363235957278, 13.58732944988135

Graph of the $Z$-function along the critical line