Properties

Label 2-121275-1.1-c1-0-113
Degree $2$
Conductor $121275$
Sign $-1$
Analytic cond. $968.385$
Root an. cond. $31.1188$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s − 3·8-s − 11-s + 4·13-s − 16-s − 4·17-s − 22-s − 4·23-s + 4·26-s + 6·29-s − 10·31-s + 5·32-s − 4·34-s + 6·37-s + 4·41-s − 12·43-s + 44-s − 4·46-s + 10·47-s − 4·52-s − 6·53-s + 6·58-s + 2·59-s − 10·62-s + 7·64-s − 8·67-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s − 1.06·8-s − 0.301·11-s + 1.10·13-s − 1/4·16-s − 0.970·17-s − 0.213·22-s − 0.834·23-s + 0.784·26-s + 1.11·29-s − 1.79·31-s + 0.883·32-s − 0.685·34-s + 0.986·37-s + 0.624·41-s − 1.82·43-s + 0.150·44-s − 0.589·46-s + 1.45·47-s − 0.554·52-s − 0.824·53-s + 0.787·58-s + 0.260·59-s − 1.27·62-s + 7/8·64-s − 0.977·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 121275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 121275 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(121275\)    =    \(3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(968.385\)
Root analytic conductor: \(31.1188\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 121275,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 \)
11 \( 1 + T \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 - 10 T + p T^{2} \) 1.47.ak
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 2 T + p T^{2} \) 1.59.ac
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.76736859505414, −13.33384447267675, −12.94187013152244, −12.48559990267212, −12.00669867685357, −11.36781944270972, −11.03034361747115, −10.46411343663098, −9.886578072053579, −9.348757244993429, −8.862365992733141, −8.456905023231455, −7.989911865793499, −7.313238704936703, −6.637886655643196, −6.154596299611079, −5.765871269974483, −5.168665293861473, −4.581909454051484, −4.122406940941044, −3.628734171267754, −3.061702135388496, −2.370826349460062, −1.678235857890743, −0.7760465689535254, 0, 0.7760465689535254, 1.678235857890743, 2.370826349460062, 3.061702135388496, 3.628734171267754, 4.122406940941044, 4.581909454051484, 5.168665293861473, 5.765871269974483, 6.154596299611079, 6.637886655643196, 7.313238704936703, 7.989911865793499, 8.456905023231455, 8.862365992733141, 9.348757244993429, 9.886578072053579, 10.46411343663098, 11.03034361747115, 11.36781944270972, 12.00669867685357, 12.48559990267212, 12.94187013152244, 13.33384447267675, 13.76736859505414

Graph of the $Z$-function along the critical line