Properties

Label 2-117117-1.1-c1-0-15
Degree $2$
Conductor $117117$
Sign $1$
Analytic cond. $935.183$
Root an. cond. $30.5807$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 3·5-s − 7-s − 11-s + 4·16-s + 6·17-s − 2·19-s − 6·20-s − 3·23-s + 4·25-s + 2·28-s + 6·29-s − 5·31-s − 3·35-s − 11·37-s + 6·41-s + 8·43-s + 2·44-s + 49-s + 6·53-s − 3·55-s − 9·59-s − 10·61-s − 8·64-s − 5·67-s − 12·68-s + 9·71-s + ⋯
L(s)  = 1  − 4-s + 1.34·5-s − 0.377·7-s − 0.301·11-s + 16-s + 1.45·17-s − 0.458·19-s − 1.34·20-s − 0.625·23-s + 4/5·25-s + 0.377·28-s + 1.11·29-s − 0.898·31-s − 0.507·35-s − 1.80·37-s + 0.937·41-s + 1.21·43-s + 0.301·44-s + 1/7·49-s + 0.824·53-s − 0.404·55-s − 1.17·59-s − 1.28·61-s − 64-s − 0.610·67-s − 1.45·68-s + 1.06·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 117117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 117117 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(117117\)    =    \(3^{2} \cdot 7 \cdot 11 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(935.183\)
Root analytic conductor: \(30.5807\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 117117,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.989315539\)
\(L(\frac12)\) \(\approx\) \(1.989315539\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
7 \( 1 + T \)
11 \( 1 + T \)
13 \( 1 \)
good2 \( 1 + p T^{2} \) 1.2.a
5 \( 1 - 3 T + p T^{2} \) 1.5.ad
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 + 11 T + p T^{2} \) 1.37.l
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 9 T + p T^{2} \) 1.59.j
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 5 T + p T^{2} \) 1.67.f
71 \( 1 - 9 T + p T^{2} \) 1.71.aj
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 3 T + p T^{2} \) 1.89.d
97 \( 1 - T + p T^{2} \) 1.97.ab
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.67347258155880, −13.22701128222920, −12.57063052702149, −12.35202551914798, −11.94784255311729, −10.83666787444944, −10.54780297688468, −10.11169760300887, −9.699761647302977, −9.204168434509278, −8.869974447449130, −8.230711508992359, −7.687497999739681, −7.187813237318134, −6.335337098580224, −5.985792650739265, −5.476815486494677, −5.139401244308569, −4.410446990329121, −3.829347425445173, −3.189109352137698, −2.638404398754999, −1.837587134439326, −1.264214189252914, −0.4554052468304249, 0.4554052468304249, 1.264214189252914, 1.837587134439326, 2.638404398754999, 3.189109352137698, 3.829347425445173, 4.410446990329121, 5.139401244308569, 5.476815486494677, 5.985792650739265, 6.335337098580224, 7.187813237318134, 7.687497999739681, 8.230711508992359, 8.869974447449130, 9.204168434509278, 9.699761647302977, 10.11169760300887, 10.54780297688468, 10.83666787444944, 11.94784255311729, 12.35202551914798, 12.57063052702149, 13.22701128222920, 13.67347258155880

Graph of the $Z$-function along the critical line