| L(s)  = 1 | − 2·4-s   + 3·5-s     − 7-s         − 11-s           + 4·16-s   + 6·17-s     − 2·19-s   − 6·20-s       − 3·23-s     + 4·25-s       + 2·28-s   + 6·29-s     − 5·31-s         − 3·35-s     − 11·37-s         + 6·41-s     + 8·43-s   + 2·44-s           + 49-s         + 6·53-s     − 3·55-s         − 9·59-s     − 10·61-s       − 8·64-s       − 5·67-s   − 12·68-s       + 9·71-s  + ⋯ | 
| L(s)  = 1 | − 4-s   + 1.34·5-s     − 0.377·7-s         − 0.301·11-s           + 16-s   + 1.45·17-s     − 0.458·19-s   − 1.34·20-s       − 0.625·23-s     + 4/5·25-s       + 0.377·28-s   + 1.11·29-s     − 0.898·31-s         − 0.507·35-s     − 1.80·37-s         + 0.937·41-s     + 1.21·43-s   + 0.301·44-s           + 1/7·49-s         + 0.824·53-s     − 0.404·55-s         − 1.17·59-s     − 1.28·61-s       − 64-s       − 0.610·67-s   − 1.45·68-s       + 1.06·71-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 117117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 117117 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(\approx\) | \(1.989315539\) | 
    
      | \(L(\frac12)\) | \(\approx\) | \(1.989315539\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 3 | \( 1 \) |  | 
|  | 7 | \( 1 + T \) |  | 
|  | 11 | \( 1 + T \) |  | 
|  | 13 | \( 1 \) |  | 
| good | 2 | \( 1 + p T^{2} \) | 1.2.a | 
|  | 5 | \( 1 - 3 T + p T^{2} \) | 1.5.ad | 
|  | 17 | \( 1 - 6 T + p T^{2} \) | 1.17.ag | 
|  | 19 | \( 1 + 2 T + p T^{2} \) | 1.19.c | 
|  | 23 | \( 1 + 3 T + p T^{2} \) | 1.23.d | 
|  | 29 | \( 1 - 6 T + p T^{2} \) | 1.29.ag | 
|  | 31 | \( 1 + 5 T + p T^{2} \) | 1.31.f | 
|  | 37 | \( 1 + 11 T + p T^{2} \) | 1.37.l | 
|  | 41 | \( 1 - 6 T + p T^{2} \) | 1.41.ag | 
|  | 43 | \( 1 - 8 T + p T^{2} \) | 1.43.ai | 
|  | 47 | \( 1 + p T^{2} \) | 1.47.a | 
|  | 53 | \( 1 - 6 T + p T^{2} \) | 1.53.ag | 
|  | 59 | \( 1 + 9 T + p T^{2} \) | 1.59.j | 
|  | 61 | \( 1 + 10 T + p T^{2} \) | 1.61.k | 
|  | 67 | \( 1 + 5 T + p T^{2} \) | 1.67.f | 
|  | 71 | \( 1 - 9 T + p T^{2} \) | 1.71.aj | 
|  | 73 | \( 1 + 2 T + p T^{2} \) | 1.73.c | 
|  | 79 | \( 1 + 10 T + p T^{2} \) | 1.79.k | 
|  | 83 | \( 1 - 12 T + p T^{2} \) | 1.83.am | 
|  | 89 | \( 1 + 3 T + p T^{2} \) | 1.89.d | 
|  | 97 | \( 1 - T + p T^{2} \) | 1.97.ab | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−13.67347258155880, −13.22701128222920, −12.57063052702149, −12.35202551914798, −11.94784255311729, −10.83666787444944, −10.54780297688468, −10.11169760300887, −9.699761647302977, −9.204168434509278, −8.869974447449130, −8.230711508992359, −7.687497999739681, −7.187813237318134, −6.335337098580224, −5.985792650739265, −5.476815486494677, −5.139401244308569, −4.410446990329121, −3.829347425445173, −3.189109352137698, −2.638404398754999, −1.837587134439326, −1.264214189252914, −0.4554052468304249, 
0.4554052468304249, 1.264214189252914, 1.837587134439326, 2.638404398754999, 3.189109352137698, 3.829347425445173, 4.410446990329121, 5.139401244308569, 5.476815486494677, 5.985792650739265, 6.335337098580224, 7.187813237318134, 7.687497999739681, 8.230711508992359, 8.869974447449130, 9.204168434509278, 9.699761647302977, 10.11169760300887, 10.54780297688468, 10.83666787444944, 11.94784255311729, 12.35202551914798, 12.57063052702149, 13.22701128222920, 13.67347258155880
