Properties

Label 2-116032-1.1-c1-0-32
Degree $2$
Conductor $116032$
Sign $1$
Analytic cond. $926.520$
Root an. cond. $30.4387$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·5-s − 3·9-s + 4·11-s + 4·13-s + 6·19-s + 4·23-s + 11·25-s + 6·29-s + 2·31-s + 37-s + 6·41-s − 4·43-s − 12·45-s − 12·47-s − 10·53-s + 16·55-s + 10·59-s − 8·61-s + 16·65-s − 4·67-s − 2·73-s − 4·79-s + 9·81-s − 16·89-s + 24·95-s − 4·97-s − 12·99-s + ⋯
L(s)  = 1  + 1.78·5-s − 9-s + 1.20·11-s + 1.10·13-s + 1.37·19-s + 0.834·23-s + 11/5·25-s + 1.11·29-s + 0.359·31-s + 0.164·37-s + 0.937·41-s − 0.609·43-s − 1.78·45-s − 1.75·47-s − 1.37·53-s + 2.15·55-s + 1.30·59-s − 1.02·61-s + 1.98·65-s − 0.488·67-s − 0.234·73-s − 0.450·79-s + 81-s − 1.69·89-s + 2.46·95-s − 0.406·97-s − 1.20·99-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 116032 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 116032 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(116032\)    =    \(2^{6} \cdot 7^{2} \cdot 37\)
Sign: $1$
Analytic conductor: \(926.520\)
Root analytic conductor: \(30.4387\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 116032,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.499328496\)
\(L(\frac12)\) \(\approx\) \(5.499328496\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 \)
37 \( 1 - T \)
good3 \( 1 + p T^{2} \) 1.3.a
5 \( 1 - 4 T + p T^{2} \) 1.5.ae
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 16 T + p T^{2} \) 1.89.q
97 \( 1 + 4 T + p T^{2} \) 1.97.e
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.63416165291692, −13.33616442300684, −12.70498202039085, −12.19136598490490, −11.41473253907171, −11.33515670349899, −10.72170863413852, −9.948959695528666, −9.758528007880448, −9.211059526403853, −8.711259175119670, −8.472774762706967, −7.647954552932088, −6.864897151710359, −6.468578760105902, −6.027548384632341, −5.705687201182117, −5.003623315732421, −4.614590433131640, −3.613453429514603, −3.067979557018565, −2.719955043623721, −1.757678712073319, −1.331313931850530, −0.7721308456465888, 0.7721308456465888, 1.331313931850530, 1.757678712073319, 2.719955043623721, 3.067979557018565, 3.613453429514603, 4.614590433131640, 5.003623315732421, 5.705687201182117, 6.027548384632341, 6.468578760105902, 6.864897151710359, 7.647954552932088, 8.472774762706967, 8.711259175119670, 9.211059526403853, 9.758528007880448, 9.948959695528666, 10.72170863413852, 11.33515670349899, 11.41473253907171, 12.19136598490490, 12.70498202039085, 13.33616442300684, 13.63416165291692

Graph of the $Z$-function along the critical line