Properties

Label 2-330e2-1.1-c1-0-18
Degree $2$
Conductor $108900$
Sign $1$
Analytic cond. $869.570$
Root an. cond. $29.4884$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·7-s − 4·13-s + 6·17-s − 2·19-s − 4·31-s + 10·37-s − 4·43-s + 12·47-s + 9·49-s + 6·53-s − 12·59-s + 10·61-s + 4·67-s + 8·73-s + 10·79-s + 6·83-s + 6·89-s + 16·91-s + 10·97-s + 101-s + 103-s + 107-s + 109-s + 113-s − 24·119-s + ⋯
L(s)  = 1  − 1.51·7-s − 1.10·13-s + 1.45·17-s − 0.458·19-s − 0.718·31-s + 1.64·37-s − 0.609·43-s + 1.75·47-s + 9/7·49-s + 0.824·53-s − 1.56·59-s + 1.28·61-s + 0.488·67-s + 0.936·73-s + 1.12·79-s + 0.658·83-s + 0.635·89-s + 1.67·91-s + 1.01·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s − 2.20·119-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 108900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 108900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(108900\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(869.570\)
Root analytic conductor: \(29.4884\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 108900,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.471770497\)
\(L(\frac12)\) \(\approx\) \(1.471770497\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.55943312442502, −13.15596805431042, −12.63827907886507, −12.17399438509979, −12.05817825880350, −11.17411418909720, −10.64004336438232, −10.14203658710611, −9.695717552477594, −9.404127426481356, −8.884606867838632, −8.105570098912734, −7.589414022797506, −7.248261119139567, −6.507084679087938, −6.229550067740229, −5.482615662149463, −5.172187673046736, −4.287901829386709, −3.767682099793725, −3.242412649304858, −2.612968420640136, −2.166728233864712, −1.063428167745214, −0.4228075684059587, 0.4228075684059587, 1.063428167745214, 2.166728233864712, 2.612968420640136, 3.242412649304858, 3.767682099793725, 4.287901829386709, 5.172187673046736, 5.482615662149463, 6.229550067740229, 6.507084679087938, 7.248261119139567, 7.589414022797506, 8.105570098912734, 8.884606867838632, 9.404127426481356, 9.695717552477594, 10.14203658710611, 10.64004336438232, 11.17411418909720, 12.05817825880350, 12.17399438509979, 12.63827907886507, 13.15596805431042, 13.55943312442502

Graph of the $Z$-function along the critical line