Properties

Label 2-107712-1.1-c1-0-109
Degree $2$
Conductor $107712$
Sign $-1$
Analytic cond. $860.084$
Root an. cond. $29.3271$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 2·7-s + 11-s + 17-s − 2·19-s − 6·23-s − 25-s + 2·29-s + 4·35-s − 2·37-s − 2·41-s − 10·43-s + 4·47-s − 3·49-s + 4·53-s + 2·55-s − 6·59-s + 10·61-s − 12·67-s + 6·71-s − 4·73-s + 2·77-s + 2·79-s + 12·83-s + 2·85-s + 2·89-s − 4·95-s + ⋯
L(s)  = 1  + 0.894·5-s + 0.755·7-s + 0.301·11-s + 0.242·17-s − 0.458·19-s − 1.25·23-s − 1/5·25-s + 0.371·29-s + 0.676·35-s − 0.328·37-s − 0.312·41-s − 1.52·43-s + 0.583·47-s − 3/7·49-s + 0.549·53-s + 0.269·55-s − 0.781·59-s + 1.28·61-s − 1.46·67-s + 0.712·71-s − 0.468·73-s + 0.227·77-s + 0.225·79-s + 1.31·83-s + 0.216·85-s + 0.211·89-s − 0.410·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 107712 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 107712 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(107712\)    =    \(2^{6} \cdot 3^{2} \cdot 11 \cdot 17\)
Sign: $-1$
Analytic conductor: \(860.084\)
Root analytic conductor: \(29.3271\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 107712,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 - T \)
17 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
13 \( 1 + p T^{2} \) 1.13.a
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.90419758351888, −13.47169693550280, −13.15145022543494, −12.26283591069066, −12.07700837771028, −11.54683435580008, −10.92594062677598, −10.48401262462609, −9.884126313407208, −9.708933507050988, −8.932233386323345, −8.456212315252080, −8.072802179132519, −7.445219066039910, −6.863110351884551, −6.207098527169001, −5.946000684614341, −5.225340291941425, −4.822652173257693, −4.141777827409410, −3.595071094469396, −2.852806161380242, −1.969360738997966, −1.863113280394123, −1.012957213913877, 0, 1.012957213913877, 1.863113280394123, 1.969360738997966, 2.852806161380242, 3.595071094469396, 4.141777827409410, 4.822652173257693, 5.225340291941425, 5.946000684614341, 6.207098527169001, 6.863110351884551, 7.445219066039910, 8.072802179132519, 8.456212315252080, 8.932233386323345, 9.708933507050988, 9.884126313407208, 10.48401262462609, 10.92594062677598, 11.54683435580008, 12.07700837771028, 12.26283591069066, 13.15145022543494, 13.47169693550280, 13.90419758351888

Graph of the $Z$-function along the critical line