Properties

Label 2-107648-1.1-c1-0-6
Degree $2$
Conductor $107648$
Sign $1$
Analytic cond. $859.573$
Root an. cond. $29.3184$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 2·5-s − 4·7-s + 9-s − 2·11-s − 2·13-s − 4·15-s + 2·17-s + 2·19-s − 8·21-s + 4·23-s − 25-s − 4·27-s − 4·33-s + 8·35-s + 10·37-s − 4·39-s + 6·41-s + 6·43-s − 2·45-s + 8·47-s + 9·49-s + 4·51-s + 6·53-s + 4·55-s + 4·57-s − 14·59-s + ⋯
L(s)  = 1  + 1.15·3-s − 0.894·5-s − 1.51·7-s + 1/3·9-s − 0.603·11-s − 0.554·13-s − 1.03·15-s + 0.485·17-s + 0.458·19-s − 1.74·21-s + 0.834·23-s − 1/5·25-s − 0.769·27-s − 0.696·33-s + 1.35·35-s + 1.64·37-s − 0.640·39-s + 0.937·41-s + 0.914·43-s − 0.298·45-s + 1.16·47-s + 9/7·49-s + 0.560·51-s + 0.824·53-s + 0.539·55-s + 0.529·57-s − 1.82·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 107648 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 107648 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(107648\)    =    \(2^{7} \cdot 29^{2}\)
Sign: $1$
Analytic conductor: \(859.573\)
Root analytic conductor: \(29.3184\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 107648,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.499104223\)
\(L(\frac12)\) \(\approx\) \(1.499104223\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
29 \( 1 \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 14 T + p T^{2} \) 1.59.o
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.63679835640419, −13.26045344552088, −12.70302172076592, −12.39951857056147, −11.83154992590539, −11.26586967597936, −10.65547205446508, −10.15498064050768, −9.563969015165020, −9.194786564951558, −8.931216134257417, −8.027779084773421, −7.717796397024200, −7.416442662625281, −6.831826233229159, −6.000206288039779, −5.731660455652094, −4.842083578583117, −4.196512089503447, −3.678822353255273, −3.205617829932160, −2.622528325387456, −2.438231231905445, −1.148441895016467, −0.3771416487391180, 0.3771416487391180, 1.148441895016467, 2.438231231905445, 2.622528325387456, 3.205617829932160, 3.678822353255273, 4.196512089503447, 4.842083578583117, 5.731660455652094, 6.000206288039779, 6.831826233229159, 7.416442662625281, 7.717796397024200, 8.027779084773421, 8.931216134257417, 9.194786564951558, 9.563969015165020, 10.15498064050768, 10.65547205446508, 11.26586967597936, 11.83154992590539, 12.39951857056147, 12.70302172076592, 13.26045344552088, 13.63679835640419

Graph of the $Z$-function along the critical line