Properties

Label 2-10296-1.1-c1-0-7
Degree $2$
Conductor $10296$
Sign $-1$
Analytic cond. $82.2139$
Root an. cond. $9.06719$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·5-s − 3·7-s − 11-s − 13-s + 5·17-s + 4·19-s − 8·23-s + 4·25-s + 9·35-s − 5·37-s + 11·43-s + 9·47-s + 2·49-s + 6·53-s + 3·55-s − 6·59-s + 3·65-s + 8·67-s + 15·71-s − 4·73-s + 3·77-s − 14·79-s + 8·83-s − 15·85-s + 12·89-s + 3·91-s − 12·95-s + ⋯
L(s)  = 1  − 1.34·5-s − 1.13·7-s − 0.301·11-s − 0.277·13-s + 1.21·17-s + 0.917·19-s − 1.66·23-s + 4/5·25-s + 1.52·35-s − 0.821·37-s + 1.67·43-s + 1.31·47-s + 2/7·49-s + 0.824·53-s + 0.404·55-s − 0.781·59-s + 0.372·65-s + 0.977·67-s + 1.78·71-s − 0.468·73-s + 0.341·77-s − 1.57·79-s + 0.878·83-s − 1.62·85-s + 1.27·89-s + 0.314·91-s − 1.23·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10296 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10296 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(10296\)    =    \(2^{3} \cdot 3^{2} \cdot 11 \cdot 13\)
Sign: $-1$
Analytic conductor: \(82.2139\)
Root analytic conductor: \(9.06719\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 10296,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 + T \)
13 \( 1 + T \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
7 \( 1 + 3 T + p T^{2} \) 1.7.d
17 \( 1 - 5 T + p T^{2} \) 1.17.af
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 5 T + p T^{2} \) 1.37.f
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 11 T + p T^{2} \) 1.43.al
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 15 T + p T^{2} \) 1.71.ap
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 + 16 T + p T^{2} \) 1.97.q
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.66724515339159, −16.18254511694861, −15.65874342185443, −15.57253907009543, −14.53286629152006, −14.09607510530623, −13.46119272661013, −12.62101657753818, −12.10212511618344, −12.01735814142823, −11.08209603808987, −10.41727599478672, −9.831879904748885, −9.329568260596725, −8.462309570027642, −7.762005335485104, −7.485058167984562, −6.742459901716455, −5.871798447402245, −5.364117182390377, −4.302036845492907, −3.718327189993172, −3.212972363399769, −2.336497844186559, −0.9126323005554363, 0, 0.9126323005554363, 2.336497844186559, 3.212972363399769, 3.718327189993172, 4.302036845492907, 5.364117182390377, 5.871798447402245, 6.742459901716455, 7.485058167984562, 7.762005335485104, 8.462309570027642, 9.329568260596725, 9.831879904748885, 10.41727599478672, 11.08209603808987, 12.01735814142823, 12.10212511618344, 12.62101657753818, 13.46119272661013, 14.09607510530623, 14.53286629152006, 15.57253907009543, 15.65874342185443, 16.18254511694861, 16.66724515339159

Graph of the $Z$-function along the critical line