Properties

Label 2-101232-1.1-c1-0-5
Degree $2$
Conductor $101232$
Sign $1$
Analytic cond. $808.341$
Root an. cond. $28.4313$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·5-s − 3·7-s − 11-s + 2·13-s − 3·17-s − 19-s + 4·25-s + 4·29-s − 9·35-s + 37-s + 6·41-s + 3·43-s − 11·47-s + 2·49-s + 2·53-s − 3·55-s − 6·59-s + 5·61-s + 6·65-s − 6·67-s − 10·71-s − 11·73-s + 3·77-s + 14·79-s − 12·83-s − 9·85-s − 4·89-s + ⋯
L(s)  = 1  + 1.34·5-s − 1.13·7-s − 0.301·11-s + 0.554·13-s − 0.727·17-s − 0.229·19-s + 4/5·25-s + 0.742·29-s − 1.52·35-s + 0.164·37-s + 0.937·41-s + 0.457·43-s − 1.60·47-s + 2/7·49-s + 0.274·53-s − 0.404·55-s − 0.781·59-s + 0.640·61-s + 0.744·65-s − 0.733·67-s − 1.18·71-s − 1.28·73-s + 0.341·77-s + 1.57·79-s − 1.31·83-s − 0.976·85-s − 0.423·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 101232 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 101232 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(101232\)    =    \(2^{4} \cdot 3^{2} \cdot 19 \cdot 37\)
Sign: $1$
Analytic conductor: \(808.341\)
Root analytic conductor: \(28.4313\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 101232,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.045288741\)
\(L(\frac12)\) \(\approx\) \(2.045288741\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
19 \( 1 + T \)
37 \( 1 - T \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 + T + p T^{2} \) 1.11.b
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 3 T + p T^{2} \) 1.17.d
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 + p T^{2} \) 1.31.a
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 3 T + p T^{2} \) 1.43.ad
47 \( 1 + 11 T + p T^{2} \) 1.47.l
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 5 T + p T^{2} \) 1.61.af
67 \( 1 + 6 T + p T^{2} \) 1.67.g
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 4 T + p T^{2} \) 1.89.e
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.48500723383487, −13.40699552924740, −12.82834292763739, −12.54809175632916, −11.79961957132505, −11.19713118872057, −10.70112714015471, −10.19012909463556, −9.823004055783876, −9.364065802663341, −8.882472738801338, −8.429918956144347, −7.710575264069102, −7.020696724778613, −6.546162966561802, −6.065968503853882, −5.844023349670096, −5.075885039164947, −4.476980074893985, −3.856264831242554, −2.995891445104802, −2.748732962301131, −1.962822866753258, −1.375613291833492, −0.4369822049892321, 0.4369822049892321, 1.375613291833492, 1.962822866753258, 2.748732962301131, 2.995891445104802, 3.856264831242554, 4.476980074893985, 5.075885039164947, 5.844023349670096, 6.065968503853882, 6.546162966561802, 7.020696724778613, 7.710575264069102, 8.429918956144347, 8.882472738801338, 9.364065802663341, 9.823004055783876, 10.19012909463556, 10.70112714015471, 11.19713118872057, 11.79961957132505, 12.54809175632916, 12.82834292763739, 13.40699552924740, 13.48500723383487

Graph of the $Z$-function along the critical line