L(s) = 1 | + 2-s − 3-s − 4-s − 6-s − 4·7-s − 3·8-s + 9-s + 12-s − 4·14-s − 16-s + 18-s + 8·19-s + 4·21-s + 3·24-s − 6·25-s − 27-s + 4·28-s + 5·32-s − 36-s + 8·38-s + 12·41-s + 4·42-s + 48-s + 2·49-s − 6·50-s + 8·53-s − 54-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.577·3-s − 1/2·4-s − 0.408·6-s − 1.51·7-s − 1.06·8-s + 1/3·9-s + 0.288·12-s − 1.06·14-s − 1/4·16-s + 0.235·18-s + 1.83·19-s + 0.872·21-s + 0.612·24-s − 6/5·25-s − 0.192·27-s + 0.755·28-s + 0.883·32-s − 1/6·36-s + 1.29·38-s + 1.87·41-s + 0.617·42-s + 0.144·48-s + 2/7·49-s − 0.848·50-s + 1.09·53-s − 0.136·54-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 311904 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 311904 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.736889791335082535304097324446, −7.941285762639805320237806266424, −7.58005456826407510059411641598, −7.11368435429897210182678491780, −6.43130195960201556922275445607, −6.07614964355063471924975790959, −5.73936479122931926421601756851, −5.25314988953772422944779442889, −4.64374511669624399068122590216, −4.10248946608386841404593084716, −3.48916350919933185414807438401, −3.15805717781871921269986140647, −2.42355400058332832135232946533, −1.09249834519731059921741391320, 0,
1.09249834519731059921741391320, 2.42355400058332832135232946533, 3.15805717781871921269986140647, 3.48916350919933185414807438401, 4.10248946608386841404593084716, 4.64374511669624399068122590216, 5.25314988953772422944779442889, 5.73936479122931926421601756851, 6.07614964355063471924975790959, 6.43130195960201556922275445607, 7.11368435429897210182678491780, 7.58005456826407510059411641598, 7.941285762639805320237806266424, 8.736889791335082535304097324446