L(s) = 1 | + 2·2-s + 3-s + 2·4-s + 2·6-s − 4·7-s + 9-s + 2·12-s − 8·14-s − 4·16-s + 2·18-s − 4·19-s − 4·21-s − 3·25-s + 27-s − 8·28-s + 6·29-s − 8·32-s + 2·36-s − 8·38-s − 12·41-s − 8·42-s − 4·48-s − 49-s − 6·50-s − 8·53-s + 2·54-s − 4·57-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 0.577·3-s + 4-s + 0.816·6-s − 1.51·7-s + 1/3·9-s + 0.577·12-s − 2.13·14-s − 16-s + 0.471·18-s − 0.917·19-s − 0.872·21-s − 3/5·25-s + 0.192·27-s − 1.51·28-s + 1.11·29-s − 1.41·32-s + 1/3·36-s − 1.29·38-s − 1.87·41-s − 1.23·42-s − 0.577·48-s − 1/7·49-s − 0.848·50-s − 1.09·53-s + 0.272·54-s − 0.529·57-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 311904 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 311904 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.526155715989749768823275864207, −8.162495825002542528669348073669, −7.52506162576454829865147104617, −6.87009989324006311865291589130, −6.44439137125381993238647794818, −6.37636240061940899313585652404, −5.69227187413300521312327295700, −5.04796383756659429699174417104, −4.58781969936242355146789276932, −4.01184686911776553242809910421, −3.46064567725120525163326359421, −3.10037126327037775382032879092, −2.54996623653434474549483400456, −1.73017569030778596946988540021, 0,
1.73017569030778596946988540021, 2.54996623653434474549483400456, 3.10037126327037775382032879092, 3.46064567725120525163326359421, 4.01184686911776553242809910421, 4.58781969936242355146789276932, 5.04796383756659429699174417104, 5.69227187413300521312327295700, 6.37636240061940899313585652404, 6.44439137125381993238647794818, 6.87009989324006311865291589130, 7.52506162576454829865147104617, 8.162495825002542528669348073669, 8.526155715989749768823275864207