Invariants
Base field: | $\F_{59}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 2 x + 59 x^{2} )( 1 + 12 x + 59 x^{2} )$ |
$1 + 14 x + 142 x^{2} + 826 x^{3} + 3481 x^{4}$ | |
Frobenius angles: | $\pm0.541558382732$, $\pm0.785358177425$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $84$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4464$ | $12427776$ | $42028689456$ | $146833477484544$ | $511102750531877424$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $74$ | $3570$ | $204638$ | $12117614$ | $714904714$ | $42181078626$ | $2488649011006$ | $146830410150814$ | $8662996172307722$ | $511116752394181650$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 84 curves (of which all are hyperelliptic):
- $y^2=46 x^6+53 x^5+41 x^4+12 x^3+x^2+15 x+38$
- $y^2=51 x^6+12 x^5+58 x^4+19 x^3+10 x^2+37 x+42$
- $y^2=47 x^6+45 x^5+39 x^4+25 x^3+19 x^2+44 x+17$
- $y^2=21 x^6+23 x^5+2 x^4+41 x^3+50 x^2+48 x+19$
- $y^2=46 x^6+56 x^5+12 x^4+6 x^3+45 x^2+18 x+25$
- $y^2=x^6+13 x^5+46 x^4+57 x^3+53 x^2+58 x+12$
- $y^2=49 x^6+36 x^5+15 x^4+14 x^3+29 x^2+39 x+1$
- $y^2=58 x^6+41 x^5+21 x^4+3 x^3+54 x^2+55 x+4$
- $y^2=51 x^6+36 x^5+12 x^4+37 x^3+27 x^2+7 x+28$
- $y^2=12 x^6+6 x^5+17 x^4+23 x^3+37 x^2+55 x+5$
- $y^2=41 x^6+36 x^5+33 x^4+43 x^3+38 x^2+54 x+48$
- $y^2=25 x^6+19 x^5+44 x^4+46 x^3+18 x^2+55 x+41$
- $y^2=26 x^6+6 x^5+45 x^4+53 x^3+12 x^2+22 x+3$
- $y^2=5 x^6+37 x^5+16 x^4+12 x^3+9 x^2+29 x+22$
- $y^2=47 x^6+31 x^5+28 x^4+46 x^3+21 x^2+58 x+6$
- $y^2=32 x^6+2 x^5+38 x^4+7 x^3+x^2+36 x+6$
- $y^2=26 x^6+38 x^5+34 x^4+33 x^3+2 x^2+36 x+6$
- $y^2=44 x^6+40 x^5+16 x^4+42 x^3+33 x^2+8 x+38$
- $y^2=4 x^6+48 x^5+18 x^4+40 x^3+8 x^2+27 x+2$
- $y^2=21 x^6+11 x^5+7 x^4+33 x^3+46 x^2+24 x+46$
- and 64 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59}$.
Endomorphism algebra over $\F_{59}$The isogeny class factors as 1.59.c $\times$ 1.59.m and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.59.ao_fm | $2$ | (not in LMFDB) |
2.59.ak_dq | $2$ | (not in LMFDB) |
2.59.k_dq | $2$ | (not in LMFDB) |