# Stored data for abelian variety isogeny class 2.59.o_fm, downloaded from the LMFDB on 11 September 2025. {"abvar_count": 4464, "abvar_counts": [4464, 12427776, 42028689456, 146833477484544, 511102750531877424, 1779220406113747923456, 6193380056435844688447344, 21559173376066288662956212224, 75047499617725577050118930205936, 261240335041281957585492461994226176], "abvar_counts_str": "4464 12427776 42028689456 146833477484544 511102750531877424 1779220406113747923456 6193380056435844688447344 21559173376066288662956212224 75047499617725577050118930205936 261240335041281957585492461994226176 ", "angle_corank": 0, "angle_rank": 2, "angles": [0.541558382731713, 0.785358177425341], "center_dim": 4, "cohen_macaulay_max": 2, "curve_count": 74, "curve_counts": [74, 3570, 204638, 12117614, 714904714, 42181078626, 2488649011006, 146830410150814, 8662996172307722, 511116752394181650], "curve_counts_str": "74 3570 204638 12117614 714904714 42181078626 2488649011006 146830410150814 8662996172307722 511116752394181650 ", "curves": ["y^2=46*x^6+53*x^5+41*x^4+12*x^3+x^2+15*x+38", "y^2=51*x^6+12*x^5+58*x^4+19*x^3+10*x^2+37*x+42", "y^2=47*x^6+45*x^5+39*x^4+25*x^3+19*x^2+44*x+17", "y^2=21*x^6+23*x^5+2*x^4+41*x^3+50*x^2+48*x+19", "y^2=46*x^6+56*x^5+12*x^4+6*x^3+45*x^2+18*x+25", "y^2=x^6+13*x^5+46*x^4+57*x^3+53*x^2+58*x+12", "y^2=49*x^6+36*x^5+15*x^4+14*x^3+29*x^2+39*x+1", "y^2=58*x^6+41*x^5+21*x^4+3*x^3+54*x^2+55*x+4", "y^2=51*x^6+36*x^5+12*x^4+37*x^3+27*x^2+7*x+28", "y^2=12*x^6+6*x^5+17*x^4+23*x^3+37*x^2+55*x+5", "y^2=41*x^6+36*x^5+33*x^4+43*x^3+38*x^2+54*x+48", "y^2=25*x^6+19*x^5+44*x^4+46*x^3+18*x^2+55*x+41", "y^2=26*x^6+6*x^5+45*x^4+53*x^3+12*x^2+22*x+3", "y^2=5*x^6+37*x^5+16*x^4+12*x^3+9*x^2+29*x+22", "y^2=47*x^6+31*x^5+28*x^4+46*x^3+21*x^2+58*x+6", "y^2=32*x^6+2*x^5+38*x^4+7*x^3+x^2+36*x+6", "y^2=26*x^6+38*x^5+34*x^4+33*x^3+2*x^2+36*x+6", "y^2=44*x^6+40*x^5+16*x^4+42*x^3+33*x^2+8*x+38", "y^2=4*x^6+48*x^5+18*x^4+40*x^3+8*x^2+27*x+2", "y^2=21*x^6+11*x^5+7*x^4+33*x^3+46*x^2+24*x+46", "y^2=49*x^6+47*x^5+34*x^4+39*x^3+4*x^2+13*x+32", "y^2=13*x^6+43*x^5+27*x^4+20*x^3+27*x^2+43*x+13", "y^2=42*x^6+55*x^5+19*x^4+x^3+10*x^2+40*x+34", "y^2=8*x^6+37*x^5+15*x^4+42*x^3+26*x^2+18*x+58", "y^2=39*x^6+11*x^5+29*x^4+13*x^3+29*x^2+11*x+39", "y^2=47*x^6+x^5+8*x^4+26*x^3+21*x^2+41*x+20", "y^2=36*x^6+41*x^5+8*x^4+3*x^3+8*x^2+38*x+9", "y^2=38*x^6+40*x^5+21*x^4+6*x^3+17*x^2+42*x+50", "y^2=38*x^6+43*x^5+39*x^4+37*x^3+33*x^2+9*x+42", "y^2=6*x^6+10*x^5+4*x^4+20*x^3+40*x^2+22*x+5", "y^2=17*x^6+22*x^5+43*x^4+21*x^3+51*x^2+49*x+9", "y^2=21*x^6+51*x^5+3*x^4+40*x^3+16*x^2+56*x+29", "y^2=53*x^6+8*x^5+7*x^4+43*x^3+9*x^2+6*x+49", "y^2=41*x^6+23*x^5+53*x^4+28*x^3+49*x^2+28*x+16", "y^2=25*x^6+29*x^5+47*x^4+29*x^3+36*x^2+13*x+51", "y^2=24*x^6+26*x^5+13*x^4+45*x^3+32*x^2+32*x+58", "y^2=32*x^6+12*x^5+47*x^4+41*x^3+47*x^2+12*x+32", "y^2=43*x^6+24*x^5+15*x^4+38*x^3+15*x^2+24*x+43", "y^2=4*x^6+51*x^5+54*x^4+20*x^3+54*x^2+51*x+4", "y^2=31*x^6+43*x^5+15*x^4+28*x^3+41*x^2+57*x+1", "y^2=10*x^6+21*x^5+45*x^4+14*x^3+13*x^2+50*x+16", "y^2=5*x^6+9*x^5+18*x^4+16*x^3+8*x^2+28*x+4", "y^2=12*x^6+14*x^5+4*x^4+39*x^3+17*x^2+52*x+5", "y^2=19*x^6+34*x^5+47*x^4+14*x^3+23*x^2+20*x+7", "y^2=47*x^6+2*x^5+15*x^4+41*x^3+28*x^2+17*x+49", "y^2=48*x^6+38*x^5+20*x^4+46*x^3+49*x^2+18*x+33", "y^2=27*x^6+x^5+12*x^4+23*x^3+49*x^2+45*x+22", "y^2=3*x^6+37*x^5+6*x^4+26*x^3+18*x+20", "y^2=46*x^6+51*x^5+16*x^4+55*x^3+35*x^2+55*x+47", "y^2=52*x^6+15*x^5+14*x^4+6*x^3+46*x^2+50*x+19", "y^2=16*x^6+57*x^5+51*x^4+53*x^2+28*x", "y^2=43*x^6+7*x^5+22*x^4+41*x^3+20*x^2+18*x+57", "y^2=41*x^6+37*x^5+23*x^4+9*x^3+37*x^2+28*x+55", "y^2=36*x^6+34*x^5+14*x^4+38*x^3+27*x^2+45*x", "y^2=17*x^6+22*x^5+45*x^4+45*x^3+26*x^2+53*x+27", "y^2=49*x^6+x^5+24*x^4+14*x^3+2*x^2+21*x+4", "y^2=20*x^6+28*x^5+49*x^4+10*x^3+53*x^2+40*x+49", "y^2=25*x^6+20*x^5+33*x^4+22*x^3+31*x^2+41*x+3", "y^2=45*x^6+43*x^5+52*x^4+33*x^3+34*x^2+45*x+52", "y^2=26*x^6+8*x^5+14*x^4+38*x^3+48*x^2+7*x+22", "y^2=56*x^6+19*x^5+27*x^4+42*x^3+28*x^2+18*x+14", "y^2=5*x^6+33*x^5+20*x^4+25*x^3+29*x^2+43*x+38", "y^2=56*x^6+6*x^5+19*x^4+53*x^3+8*x^2+25*x+7", "y^2=40*x^6+51*x^5+5*x^4+32*x^3+41*x^2+16*x+37", "y^2=25*x^6+41*x^4+52*x^3+40*x^2+57*x+7", "y^2=7*x^6+31*x^5+11*x^4+6*x^3+11*x^2+52*x+4", "y^2=49*x^6+29*x^5+25*x^4+31*x^3+5*x^2+56*x", "y^2=32*x^6+19*x^5+34*x^4+26*x^3+x^2+34*x+21", "y^2=47*x^6+8*x^5+43*x^4+22*x^3+43*x^2+8*x+47", "y^2=28*x^6+35*x^5+16*x^4+18*x^3+58*x^2+12*x+31", "y^2=17*x^6+8*x^5+27*x^4+2*x^3+37*x^2+29*x+57", "y^2=42*x^6+32*x^5+19*x^4+45*x^3+50*x^2+53*x+1", "y^2=32*x^6+56*x^5+8*x^4+20*x^3+10*x^2+3*x+51", "y^2=58*x^6+52*x^5+57*x^4+27*x^3+43*x^2+47", "y^2=17*x^6+48*x^5+18*x^4+16*x^3+46*x^2+46*x+2", "y^2=16*x^6+16*x^5+15*x^4+6*x^3+52*x^2+16*x+12", "y^2=45*x^6+32*x^5+19*x^4+46*x^3+36*x^2+29*x+44", "y^2=18*x^6+20*x^5+35*x^4+45*x^3+23*x^2+53*x+39", "y^2=8*x^6+17*x^5+46*x^4+55*x^3+10*x+49", "y^2=17*x^6+58*x^5+57*x^4+43*x^3+5*x^2+25*x+27", "y^2=39*x^6+6*x^5+54*x^4+37*x^3+18*x^2+29*x+38", "y^2=2*x^6+57*x^5+15*x^4+12*x^3+32*x^2+46*x+41", "y^2=49*x^6+24*x^5+12*x^4+5*x^3+x^2+23*x+25", "y^2=7*x^6+33*x^5+47*x^4+53*x^3+54*x^2+26*x+13"], "dim1_distinct": 2, "dim1_factors": 2, "dim2_distinct": 0, "dim2_factors": 0, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 12, "g": 2, "galois_groups": ["2T1", "2T1"], "geom_dim1_distinct": 2, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["2T1", "2T1"], "geometric_number_fields": ["2.0.232.1", "2.0.23.1"], "geometric_splitting_field": "4.0.28472896.3", "geometric_splitting_polynomials": [[2762, -128, 129, -2, 1]], "group_structure_count": 4, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 84, "is_geometrically_simple": false, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": false, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 84, "label": "2.59.o_fm", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 2, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["2.0.232.1", "2.0.23.1"], "p": 59, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, 14, 142, 826, 3481], "poly_str": "1 14 142 826 3481 ", "primitive_models": [], "q": 59, "real_poly": [1, 14, 24], "simple_distinct": ["1.59.c", "1.59.m"], "simple_factors": ["1.59.cA", "1.59.mA"], "simple_multiplicities": [1, 1], "singular_primes": ["2,-V-1", "5,3*F^2+3*F-13*V+46"], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.28472896.3", "splitting_polynomials": [[2762, -128, 129, -2, 1]], "twist_count": 4, "twists": [["2.59.ao_fm", "2.3481.dk_fxu", 2], ["2.59.ak_dq", "2.3481.dk_fxu", 2], ["2.59.k_dq", "2.3481.dk_fxu", 2]], "weak_equivalence_count": 14, "zfv_index": 200, "zfv_index_factorization": [[2, 3], [5, 2]], "zfv_is_bass": false, "zfv_is_maximal": false, "zfv_plus_index": 1, "zfv_plus_index_factorization": [], "zfv_plus_norm": 21344, "zfv_singular_count": 4, "zfv_singular_primes": ["2,-V-1", "5,3*F^2+3*F-13*V+46"]}