-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 4464, 'abvar_counts': [4464, 12427776, 42028689456, 146833477484544, 511102750531877424, 1779220406113747923456, 6193380056435844688447344, 21559173376066288662956212224, 75047499617725577050118930205936, 261240335041281957585492461994226176], 'abvar_counts_str': '4464 12427776 42028689456 146833477484544 511102750531877424 1779220406113747923456 6193380056435844688447344 21559173376066288662956212224 75047499617725577050118930205936 261240335041281957585492461994226176 ', 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.541558382731713, 0.785358177425341], 'center_dim': 4, 'cohen_macaulay_max': 2, 'curve_count': 74, 'curve_counts': [74, 3570, 204638, 12117614, 714904714, 42181078626, 2488649011006, 146830410150814, 8662996172307722, 511116752394181650], 'curve_counts_str': '74 3570 204638 12117614 714904714 42181078626 2488649011006 146830410150814 8662996172307722 511116752394181650 ', 'curves': ['y^2=46*x^6+53*x^5+41*x^4+12*x^3+x^2+15*x+38', 'y^2=51*x^6+12*x^5+58*x^4+19*x^3+10*x^2+37*x+42', 'y^2=47*x^6+45*x^5+39*x^4+25*x^3+19*x^2+44*x+17', 'y^2=21*x^6+23*x^5+2*x^4+41*x^3+50*x^2+48*x+19', 'y^2=46*x^6+56*x^5+12*x^4+6*x^3+45*x^2+18*x+25', 'y^2=x^6+13*x^5+46*x^4+57*x^3+53*x^2+58*x+12', 'y^2=49*x^6+36*x^5+15*x^4+14*x^3+29*x^2+39*x+1', 'y^2=58*x^6+41*x^5+21*x^4+3*x^3+54*x^2+55*x+4', 'y^2=51*x^6+36*x^5+12*x^4+37*x^3+27*x^2+7*x+28', 'y^2=12*x^6+6*x^5+17*x^4+23*x^3+37*x^2+55*x+5', 'y^2=41*x^6+36*x^5+33*x^4+43*x^3+38*x^2+54*x+48', 'y^2=25*x^6+19*x^5+44*x^4+46*x^3+18*x^2+55*x+41', 'y^2=26*x^6+6*x^5+45*x^4+53*x^3+12*x^2+22*x+3', 'y^2=5*x^6+37*x^5+16*x^4+12*x^3+9*x^2+29*x+22', 'y^2=47*x^6+31*x^5+28*x^4+46*x^3+21*x^2+58*x+6', 'y^2=32*x^6+2*x^5+38*x^4+7*x^3+x^2+36*x+6', 'y^2=26*x^6+38*x^5+34*x^4+33*x^3+2*x^2+36*x+6', 'y^2=44*x^6+40*x^5+16*x^4+42*x^3+33*x^2+8*x+38', 'y^2=4*x^6+48*x^5+18*x^4+40*x^3+8*x^2+27*x+2', 'y^2=21*x^6+11*x^5+7*x^4+33*x^3+46*x^2+24*x+46', 'y^2=49*x^6+47*x^5+34*x^4+39*x^3+4*x^2+13*x+32', 'y^2=13*x^6+43*x^5+27*x^4+20*x^3+27*x^2+43*x+13', 'y^2=42*x^6+55*x^5+19*x^4+x^3+10*x^2+40*x+34', 'y^2=8*x^6+37*x^5+15*x^4+42*x^3+26*x^2+18*x+58', 'y^2=39*x^6+11*x^5+29*x^4+13*x^3+29*x^2+11*x+39', 'y^2=47*x^6+x^5+8*x^4+26*x^3+21*x^2+41*x+20', 'y^2=36*x^6+41*x^5+8*x^4+3*x^3+8*x^2+38*x+9', 'y^2=38*x^6+40*x^5+21*x^4+6*x^3+17*x^2+42*x+50', 'y^2=38*x^6+43*x^5+39*x^4+37*x^3+33*x^2+9*x+42', 'y^2=6*x^6+10*x^5+4*x^4+20*x^3+40*x^2+22*x+5', 'y^2=17*x^6+22*x^5+43*x^4+21*x^3+51*x^2+49*x+9', 'y^2=21*x^6+51*x^5+3*x^4+40*x^3+16*x^2+56*x+29', 'y^2=53*x^6+8*x^5+7*x^4+43*x^3+9*x^2+6*x+49', 'y^2=41*x^6+23*x^5+53*x^4+28*x^3+49*x^2+28*x+16', 'y^2=25*x^6+29*x^5+47*x^4+29*x^3+36*x^2+13*x+51', 'y^2=24*x^6+26*x^5+13*x^4+45*x^3+32*x^2+32*x+58', 'y^2=32*x^6+12*x^5+47*x^4+41*x^3+47*x^2+12*x+32', 'y^2=43*x^6+24*x^5+15*x^4+38*x^3+15*x^2+24*x+43', 'y^2=4*x^6+51*x^5+54*x^4+20*x^3+54*x^2+51*x+4', 'y^2=31*x^6+43*x^5+15*x^4+28*x^3+41*x^2+57*x+1', 'y^2=10*x^6+21*x^5+45*x^4+14*x^3+13*x^2+50*x+16', 'y^2=5*x^6+9*x^5+18*x^4+16*x^3+8*x^2+28*x+4', 'y^2=12*x^6+14*x^5+4*x^4+39*x^3+17*x^2+52*x+5', 'y^2=19*x^6+34*x^5+47*x^4+14*x^3+23*x^2+20*x+7', 'y^2=47*x^6+2*x^5+15*x^4+41*x^3+28*x^2+17*x+49', 'y^2=48*x^6+38*x^5+20*x^4+46*x^3+49*x^2+18*x+33', 'y^2=27*x^6+x^5+12*x^4+23*x^3+49*x^2+45*x+22', 'y^2=3*x^6+37*x^5+6*x^4+26*x^3+18*x+20', 'y^2=46*x^6+51*x^5+16*x^4+55*x^3+35*x^2+55*x+47', 'y^2=52*x^6+15*x^5+14*x^4+6*x^3+46*x^2+50*x+19', 'y^2=16*x^6+57*x^5+51*x^4+53*x^2+28*x', 'y^2=43*x^6+7*x^5+22*x^4+41*x^3+20*x^2+18*x+57', 'y^2=41*x^6+37*x^5+23*x^4+9*x^3+37*x^2+28*x+55', 'y^2=36*x^6+34*x^5+14*x^4+38*x^3+27*x^2+45*x', 'y^2=17*x^6+22*x^5+45*x^4+45*x^3+26*x^2+53*x+27', 'y^2=49*x^6+x^5+24*x^4+14*x^3+2*x^2+21*x+4', 'y^2=20*x^6+28*x^5+49*x^4+10*x^3+53*x^2+40*x+49', 'y^2=25*x^6+20*x^5+33*x^4+22*x^3+31*x^2+41*x+3', 'y^2=45*x^6+43*x^5+52*x^4+33*x^3+34*x^2+45*x+52', 'y^2=26*x^6+8*x^5+14*x^4+38*x^3+48*x^2+7*x+22', 'y^2=56*x^6+19*x^5+27*x^4+42*x^3+28*x^2+18*x+14', 'y^2=5*x^6+33*x^5+20*x^4+25*x^3+29*x^2+43*x+38', 'y^2=56*x^6+6*x^5+19*x^4+53*x^3+8*x^2+25*x+7', 'y^2=40*x^6+51*x^5+5*x^4+32*x^3+41*x^2+16*x+37', 'y^2=25*x^6+41*x^4+52*x^3+40*x^2+57*x+7', 'y^2=7*x^6+31*x^5+11*x^4+6*x^3+11*x^2+52*x+4', 'y^2=49*x^6+29*x^5+25*x^4+31*x^3+5*x^2+56*x', 'y^2=32*x^6+19*x^5+34*x^4+26*x^3+x^2+34*x+21', 'y^2=47*x^6+8*x^5+43*x^4+22*x^3+43*x^2+8*x+47', 'y^2=28*x^6+35*x^5+16*x^4+18*x^3+58*x^2+12*x+31', 'y^2=17*x^6+8*x^5+27*x^4+2*x^3+37*x^2+29*x+57', 'y^2=42*x^6+32*x^5+19*x^4+45*x^3+50*x^2+53*x+1', 'y^2=32*x^6+56*x^5+8*x^4+20*x^3+10*x^2+3*x+51', 'y^2=58*x^6+52*x^5+57*x^4+27*x^3+43*x^2+47', 'y^2=17*x^6+48*x^5+18*x^4+16*x^3+46*x^2+46*x+2', 'y^2=16*x^6+16*x^5+15*x^4+6*x^3+52*x^2+16*x+12', 'y^2=45*x^6+32*x^5+19*x^4+46*x^3+36*x^2+29*x+44', 'y^2=18*x^6+20*x^5+35*x^4+45*x^3+23*x^2+53*x+39', 'y^2=8*x^6+17*x^5+46*x^4+55*x^3+10*x+49', 'y^2=17*x^6+58*x^5+57*x^4+43*x^3+5*x^2+25*x+27', 'y^2=39*x^6+6*x^5+54*x^4+37*x^3+18*x^2+29*x+38', 'y^2=2*x^6+57*x^5+15*x^4+12*x^3+32*x^2+46*x+41', 'y^2=49*x^6+24*x^5+12*x^4+5*x^3+x^2+23*x+25', 'y^2=7*x^6+33*x^5+47*x^4+53*x^3+54*x^2+26*x+13'], 'dim1_distinct': 2, 'dim1_factors': 2, 'dim2_distinct': 0, 'dim2_factors': 0, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 12, 'g': 2, 'galois_groups': ['2T1', '2T1'], 'geom_dim1_distinct': 2, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['2T1', '2T1'], 'geometric_number_fields': ['2.0.232.1', '2.0.23.1'], 'geometric_splitting_field': '4.0.28472896.3', 'geometric_splitting_polynomials': [[2762, -128, 129, -2, 1]], 'group_structure_count': 4, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 84, 'is_geometrically_simple': False, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': False, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 84, 'label': '2.59.o_fm', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['2.0.232.1', '2.0.23.1'], 'p': 59, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, 14, 142, 826, 3481], 'poly_str': '1 14 142 826 3481 ', 'primitive_models': [], 'q': 59, 'real_poly': [1, 14, 24], 'simple_distinct': ['1.59.c', '1.59.m'], 'simple_factors': ['1.59.cA', '1.59.mA'], 'simple_multiplicities': [1, 1], 'singular_primes': ['2,-V-1', '5,3*F^2+3*F-13*V+46'], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.28472896.3', 'splitting_polynomials': [[2762, -128, 129, -2, 1]], 'twist_count': 4, 'twists': [['2.59.ao_fm', '2.3481.dk_fxu', 2], ['2.59.ak_dq', '2.3481.dk_fxu', 2], ['2.59.k_dq', '2.3481.dk_fxu', 2]], 'weak_equivalence_count': 14, 'zfv_index': 200, 'zfv_index_factorization': [[2, 3], [5, 2]], 'zfv_is_bass': False, 'zfv_is_maximal': False, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 21344, 'zfv_singular_count': 4, 'zfv_singular_primes': ['2,-V-1', '5,3*F^2+3*F-13*V+46']}
-
av_fq_endalg_factors • Show schema
Hide schema
-
id: 51959
{'base_label': '2.59.o_fm', 'extension_degree': 1, 'extension_label': '1.59.c', 'multiplicity': 1}
-
id: 51960
{'base_label': '2.59.o_fm', 'extension_degree': 1, 'extension_label': '1.59.m', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.232.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.59.c', 'galois_group': '2T1', 'places': [['1', '1'], ['58', '1']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.23.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.59.m', 'galois_group': '2T1', 'places': [['32', '1'], ['26', '1']]}