Properties

Label 2.53.i_cg
Base field $\F_{53}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{53}$
Dimension:  $2$
L-polynomial:  $( 1 - 4 x + 53 x^{2} )( 1 + 12 x + 53 x^{2} )$
  $1 + 8 x + 58 x^{2} + 424 x^{3} + 2809 x^{4}$
Frobenius angles:  $\pm0.411414467217$, $\pm0.808354237277$
Angle rank:  $2$ (numerical)
Jacobians:  $288$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $3300$ $8038800$ $22222916100$ $62273046528000$ $174853685983366500$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $62$ $2862$ $149270$ $7892174$ $418114702$ $22164597054$ $1174712119846$ $62259698390686$ $3299763598040030$ $174887468774575182$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 288 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{53}$.

Endomorphism algebra over $\F_{53}$
The isogeny class factors as 1.53.ae $\times$ 1.53.m and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.53.aq_fy$2$(not in LMFDB)
2.53.ai_cg$2$(not in LMFDB)
2.53.q_fy$2$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.53.aq_fy$2$(not in LMFDB)
2.53.ai_cg$2$(not in LMFDB)
2.53.q_fy$2$(not in LMFDB)
2.53.aba_ko$4$(not in LMFDB)
2.53.ac_ack$4$(not in LMFDB)
2.53.c_ack$4$(not in LMFDB)
2.53.ba_ko$4$(not in LMFDB)