Invariants
Base field: | $\F_{53}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 4 x + 53 x^{2} )( 1 + 12 x + 53 x^{2} )$ |
$1 + 8 x + 58 x^{2} + 424 x^{3} + 2809 x^{4}$ | |
Frobenius angles: | $\pm0.411414467217$, $\pm0.808354237277$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $288$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3300$ | $8038800$ | $22222916100$ | $62273046528000$ | $174853685983366500$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $62$ | $2862$ | $149270$ | $7892174$ | $418114702$ | $22164597054$ | $1174712119846$ | $62259698390686$ | $3299763598040030$ | $174887468774575182$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 288 curves (of which all are hyperelliptic):
- $y^2=45 x^6+23 x^5+31 x^4+18 x^3+31 x^2+23 x+45$
- $y^2=40 x^6+37 x^5+25 x^4+28 x^3+25 x^2+37 x+40$
- $y^2=47 x^5+36 x^4+31 x^3+16 x^2+32 x+13$
- $y^2=22 x^6+7 x^5+43 x^4+45 x^3+6 x^2+17 x+34$
- $y^2=42 x^6+14 x^5+42 x^4+x^3+x^2+44 x+23$
- $y^2=45 x^6+8 x^5+33 x^4+30 x^3+36 x^2+16 x+36$
- $y^2=36 x^6+34 x^5+44 x^4+17 x^3+9 x^2+13 x+40$
- $y^2=22 x^6+52 x^5+27 x^4+38 x^3+14 x^2+20 x+47$
- $y^2=36 x^6+34 x^5+28 x^4+7 x^3+33 x^2+23 x+42$
- $y^2=46 x^6+20 x^5+21 x^4+21 x^2+20 x+46$
- $y^2=46 x^6+34 x^4+43 x^3+25 x^2+44 x+11$
- $y^2=14 x^6+11 x^5+44 x^4+37 x^3+47 x^2+4 x+43$
- $y^2=26 x^6+24 x^5+2 x^4+42 x^3+27 x^2+48 x+35$
- $y^2=12 x^6+6 x^5+4 x^4+31 x^3+15 x+52$
- $y^2=50 x^6+21 x^5+14 x^4+28 x^3+46 x^2+45 x+17$
- $y^2=23 x^6+24 x^5+10 x^4+3 x^3+10 x^2+24 x+23$
- $y^2=26 x^6+41 x^5+3 x^4+21 x^3+38 x^2+41 x+30$
- $y^2=22 x^6+24 x^5+44 x^4+48 x^3+36 x^2+17 x+3$
- $y^2=x^6+19 x^5+6 x^4+35 x^3+45 x+46$
- $y^2=22 x^6+44 x^5+7 x^4+47 x^3+10 x^2+13 x+32$
- and 268 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$The isogeny class factors as 1.53.ae $\times$ 1.53.m and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.