L(s) = 1 | + 5-s − 9·23-s − 3·25-s − 5·29-s − 4·43-s + 13·47-s − 4·49-s − 17·53-s + 23·67-s − 3·71-s − 16·73-s − 4·97-s − 6·101-s − 9·115-s − 11·121-s − 2·125-s + 127-s + 131-s + 137-s + 139-s − 5·145-s + 149-s + 151-s + 157-s + 163-s + 167-s + 12·169-s + ⋯ |
L(s) = 1 | + 0.447·5-s − 1.87·23-s − 3/5·25-s − 0.928·29-s − 0.609·43-s + 1.89·47-s − 4/7·49-s − 2.33·53-s + 2.80·67-s − 0.356·71-s − 1.87·73-s − 0.406·97-s − 0.597·101-s − 0.839·115-s − 121-s − 0.178·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 0.415·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 0.923·169-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.285814911773320699378909658928, −8.128895191600339898630336615628, −7.54897503915688231652176416867, −7.14364621337242307941280571939, −6.48512198659618585116890288465, −6.07174699662810739821387495027, −5.72171370080198028338415339623, −5.16775822001417693146556910427, −4.57155919979003890081725580271, −3.91945789412065732999417151941, −3.59181037426724491969717023256, −2.68649758228303388344211089170, −2.09099002127923022917459852365, −1.44832722441958753262806348186, 0,
1.44832722441958753262806348186, 2.09099002127923022917459852365, 2.68649758228303388344211089170, 3.59181037426724491969717023256, 3.91945789412065732999417151941, 4.57155919979003890081725580271, 5.16775822001417693146556910427, 5.72171370080198028338415339623, 6.07174699662810739821387495027, 6.48512198659618585116890288465, 7.14364621337242307941280571939, 7.54897503915688231652176416867, 8.128895191600339898630336615628, 8.285814911773320699378909658928