Invariants
This isogeny class is simple but not geometrically simple,
primitive,
ordinary,
and not supersingular.
It is principally polarizable and
contains a Jacobian.
This isogeny class is ordinary.
Point counts
Point counts of the abelian variety
| $r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
| $A(\F_{q^r})$ |
$7823$ |
$61199329$ |
$496982673200$ |
$3937347019448089$ |
$31181719927827565703$ |
Point counts of the curve
| $r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$6$ |
$7$ |
$8$ |
$9$ |
$10$ |
| $C(\F_{q^r})$ |
$90$ |
$7724$ |
$704970$ |
$62754324$ |
$5584059450$ |
$496984055438$ |
$44231334895530$ |
$3936588983683684$ |
$350356403707485210$ |
$31181719925688947804$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 90 curves (of which all are hyperelliptic):
- $y^2=6 x^6+45 x^5+8 x^4+17 x^3+16 x^2+82 x+5$
- $y^2=18 x^6+46 x^5+24 x^4+51 x^3+48 x^2+68 x+15$
- $y^2=65 x^6+24 x^5+21 x^4+43 x^3+30 x^2+79 x+9$
- $y^2=17 x^6+72 x^5+63 x^4+40 x^3+x^2+59 x+27$
- $y^2=31 x^6+21 x^5+5 x^4+54 x^3+25 x^2+22 x+44$
- $y^2=4 x^6+63 x^5+15 x^4+73 x^3+75 x^2+66 x+43$
- $y^2=62 x^6+21 x^5+60 x^4+23 x^3+74 x^2+20 x+40$
- $y^2=8 x^6+63 x^5+2 x^4+69 x^3+44 x^2+60 x+31$
- $y^2=28 x^6+78 x^5+61 x^4+23 x^3+85 x^2+36 x+46$
- $y^2=84 x^6+56 x^5+5 x^4+69 x^3+77 x^2+19 x+49$
- $y^2=14 x^6+39 x^5+73 x^4+67 x^3+67 x^2+33 x+36$
- $y^2=42 x^6+28 x^5+41 x^4+23 x^3+23 x^2+10 x+19$
- $y^2=14 x^6+46 x^5+58 x^4+33 x^3+48 x^2+26 x+81$
- $y^2=80 x^6+35 x^5+64 x^4+49 x^3+37 x^2+49 x+67$
- $y^2=62 x^6+16 x^5+14 x^4+58 x^3+22 x^2+58 x+23$
- $y^2=7 x^6+3 x^5+48 x^4+6 x^3+17 x^2+65 x+10$
- $y^2=21 x^6+9 x^5+55 x^4+18 x^3+51 x^2+17 x+30$
- $y^2=10 x^6+31 x^5+43 x^4+51 x^3+52 x^2+60 x+82$
- $y^2=10 x^6+19 x^5+2 x^4+77 x^3+24 x^2+43 x+35$
- $y^2=30 x^6+57 x^5+6 x^4+53 x^3+72 x^2+40 x+16$
- and 70 more
- $y^2=86 x^6+76 x^5+82 x^4+30 x^3+52 x+78$
- $y^2=80 x^6+50 x^5+68 x^4+x^3+67 x+56$
- $y^2=2 x^6+67 x^5+50 x^4+64 x^3+14 x^2+6 x+60$
- $y^2=6 x^6+23 x^5+61 x^4+14 x^3+42 x^2+18 x+2$
- $y^2=86 x^6+81 x^5+30 x^3+84 x^2+67 x+84$
- $y^2=80 x^6+65 x^5+x^3+74 x^2+23 x+74$
- $y^2=28 x^6+18 x^5+23 x^4+24 x^3+12 x^2+62 x+69$
- $y^2=84 x^6+54 x^5+69 x^4+72 x^3+36 x^2+8 x+29$
- $y^2=10 x^6+47 x^5+87 x^4+44 x^3+45 x^2+39 x+81$
- $y^2=30 x^6+52 x^5+83 x^4+43 x^3+46 x^2+28 x+65$
- $y^2=61 x^6+2 x^5+51 x^4+78 x^3+21 x^2+12 x+37$
- $y^2=35 x^6+36 x^5+13 x^4+12 x^3+51 x^2+37 x+25$
- $y^2=16 x^6+19 x^5+39 x^4+36 x^3+64 x^2+22 x+75$
- $y^2=40 x^6+38 x^5+63 x^4+3 x^3+59 x^2+67 x+27$
- $y^2=31 x^6+25 x^5+11 x^4+9 x^3+88 x^2+23 x+81$
- $y^2=64 x^6+58 x^5+32 x^4+20 x^3+44 x^2+78$
- $y^2=67 x^6+22 x^5+77 x^4+35 x^3+71 x^2+46 x+27$
- $y^2=23 x^6+66 x^5+53 x^4+16 x^3+35 x^2+49 x+81$
- $y^2=8 x^6+49 x^5+18 x^4+46 x^3+77 x^2+6 x+47$
- $y^2=24 x^6+58 x^5+54 x^4+49 x^3+53 x^2+18 x+52$
- $y^2=20 x^6+66 x^5+42 x^4+25 x^3+64 x^2+32 x+57$
- $y^2=60 x^6+20 x^5+37 x^4+75 x^3+14 x^2+7 x+82$
- $y^2=23 x^6+50 x^5+50 x^4+14 x^3+8 x^2+44 x+11$
- $y^2=69 x^6+61 x^5+61 x^4+42 x^3+24 x^2+43 x+33$
- $y^2=69 x^6+52 x^4+28 x^3+40 x^2+24 x+39$
- $y^2=29 x^6+67 x^4+84 x^3+31 x^2+72 x+28$
- $y^2=64 x^6+8 x^5+4 x^4+63 x^3+72 x^2+47 x+66$
- $y^2=29 x^6+41 x^5+43 x^4+69 x^3+19 x^2+73 x+36$
- $y^2=87 x^6+34 x^5+40 x^4+29 x^3+57 x^2+41 x+19$
- $y^2=71 x^6+55 x^5+66 x^4+56 x^3+37 x^2+30 x+13$
- $y^2=35 x^6+76 x^5+20 x^4+79 x^3+22 x^2+x+39$
- $y^2=19 x^6+12 x^5+59 x^4+36 x^3+79 x^2+52 x+36$
- $y^2=57 x^6+36 x^5+88 x^4+19 x^3+59 x^2+67 x+19$
- $y^2=41 x^6+12 x^5+71 x^4+55 x^3+34 x^2+76 x+76$
- $y^2=46 x^6+10 x^5+31 x^4+10 x^3+27 x^2+66 x+8$
- $y^2=68 x^6+20 x^5+53 x^4+28 x^3+25 x^2+32 x+84$
- $y^2=26 x^6+60 x^5+70 x^4+84 x^3+75 x^2+7 x+74$
- $y^2=22 x^6+39 x^5+47 x^4+31 x^3+83 x^2+51 x+33$
- $y^2=26 x^6+70 x^5+76 x^4+49 x^3+x^2+18 x+42$
- $y^2=78 x^6+32 x^5+50 x^4+58 x^3+3 x^2+54 x+37$
- $y^2=38 x^6+84 x^5+46 x^4+65 x^3+6 x^2+x+74$
- $y^2=25 x^6+74 x^5+49 x^4+17 x^3+18 x^2+3 x+44$
- $y^2=35 x^6+78 x^5+12 x^4+12 x^3+60 x^2+55 x+37$
- $y^2=16 x^6+56 x^5+36 x^4+36 x^3+2 x^2+76 x+22$
- $y^2=14 x^6+61 x^5+53 x^4+12 x^3+20 x^2+24 x+61$
- $y^2=42 x^6+5 x^5+70 x^4+36 x^3+60 x^2+72 x+5$
- $y^2=39 x^6+53 x^5+66 x^4+82 x^3+53 x^2+27 x+84$
- $y^2=28 x^6+70 x^5+20 x^4+68 x^3+70 x^2+81 x+74$
- $y^2=64 x^6+26 x^5+63 x^4+87 x^3+63 x^2+42 x+64$
- $y^2=14 x^6+78 x^5+11 x^4+83 x^3+11 x^2+37 x+14$
- $y^2=81 x^6+37 x^5+7 x^4+13 x^3+45 x^2+18 x+32$
- $y^2=65 x^6+22 x^5+21 x^4+39 x^3+46 x^2+54 x+7$
- $y^2=67 x^6+8 x^5+63 x^4+48 x^3+17 x^2+34 x+65$
- $y^2=23 x^6+24 x^5+11 x^4+55 x^3+51 x^2+13 x+17$
- $y^2=10 x^6+75 x^5+71 x^4+86 x^3+74 x^2+38 x+39$
- $y^2=30 x^6+47 x^5+35 x^4+80 x^3+44 x^2+25 x+28$
- $y^2=66 x^6+16 x^5+63 x^3+29 x^2+5 x+59$
- $y^2=20 x^6+48 x^5+11 x^3+87 x^2+15 x+88$
- $y^2=64 x^6+8 x^5+63 x^4+10 x^3+78 x^2+41 x+67$
- $y^2=33 x^6+84 x^5+19 x^4+56 x^3+73 x^2+49 x+12$
- $y^2=10 x^6+74 x^5+57 x^4+79 x^3+41 x^2+58 x+36$
- $y^2=72 x^6+32 x^5+69 x^4+9 x^3+68 x^2+27 x+76$
- $y^2=38 x^6+7 x^5+29 x^4+27 x^3+26 x^2+81 x+50$
- $y^2=62 x^6+53 x^5+35 x^4+50 x^3+41 x^2+43 x+34$
- $y^2=8 x^6+70 x^5+16 x^4+61 x^3+34 x^2+40 x+13$
- $y^2=40 x^6+26 x^5+84 x^4+46 x^3+76 x^2+54 x+1$
- $y^2=52 x^6+4 x^5+86 x^4+83 x^3+62 x^2+52 x+88$
- $y^2=67 x^6+12 x^5+80 x^4+71 x^3+8 x^2+67 x+86$
- $y^2=9 x^6+82 x^5+76 x^4+69 x^3+65 x^2+23 x+56$
- $y^2=27 x^6+68 x^5+50 x^4+29 x^3+17 x^2+69 x+79$
All geometric endomorphisms are defined over $\F_{89^{2}}$.
Endomorphism algebra over $\F_{89}$
Endomorphism algebra over $\overline{\F}_{89}$
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
| 2.89.a_dv | $4$ | (not in LMFDB) |