Invariants
Base field: | $\F_{59}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 85 x^{2} + 3481 x^{4}$ |
Frobenius angles: | $\pm0.378006873890$, $\pm0.621993126110$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{33}, \sqrt{-203})\) |
Galois group: | $C_2^2$ |
Jacobians: | $180$ |
Isomorphism classes: | 192 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3567$ | $12723489$ | $42180260112$ | $146824088175801$ | $511116752198727327$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $60$ | $3652$ | $205380$ | $12116836$ | $714924300$ | $42179986582$ | $2488651484820$ | $146830485935428$ | $8662995818654940$ | $511116751096813252$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 180 curves (of which all are hyperelliptic):
- $y^2=17 x^6+41 x^5+11 x^4+49 x^3+34 x^2+22 x+28$
- $y^2=34 x^6+23 x^5+22 x^4+39 x^3+9 x^2+44 x+56$
- $y^2=45 x^6+21 x^5+43 x^4+29 x^3+20 x^2+7 x+55$
- $y^2=4 x^6+2 x^5+27 x^4+55 x^3+2 x^2+5 x+49$
- $y^2=8 x^6+4 x^5+54 x^4+51 x^3+4 x^2+10 x+39$
- $y^2=11 x^6+50 x^5+5 x^4+32 x^3+33 x^2+25 x+22$
- $y^2=22 x^6+41 x^5+10 x^4+5 x^3+7 x^2+50 x+44$
- $y^2=35 x^6+22 x^5+15 x^4+13 x^3+16 x^2+30 x+30$
- $y^2=11 x^6+44 x^5+30 x^4+26 x^3+32 x^2+x+1$
- $y^2=29 x^6+53 x^5+17 x^4+49 x^3+41 x^2+20 x+22$
- $y^2=58 x^6+47 x^5+34 x^4+39 x^3+23 x^2+40 x+44$
- $y^2=40 x^6+13 x^5+8 x^4+52 x^3+8 x^2+58 x+56$
- $y^2=21 x^6+26 x^5+16 x^4+45 x^3+16 x^2+57 x+53$
- $y^2=10 x^6+33 x^5+39 x^4+44 x^3+46 x^2+14 x+44$
- $y^2=20 x^6+7 x^5+19 x^4+29 x^3+33 x^2+28 x+29$
- $y^2=39 x^6+20 x^5+16 x^4+4 x^3+33 x^2+48 x+10$
- $y^2=19 x^6+40 x^5+32 x^4+8 x^3+7 x^2+37 x+20$
- $y^2=29 x^6+55 x^5+37 x^4+9 x^3+40 x^2+13 x+48$
- $y^2=58 x^6+51 x^5+15 x^4+18 x^3+21 x^2+26 x+37$
- $y^2=26 x^6+37 x^5+22 x^4+32 x^3+10 x^2+33 x+52$
- and 160 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59^{2}}$.
Endomorphism algebra over $\F_{59}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{33}, \sqrt{-203})\). |
The base change of $A$ to $\F_{59^{2}}$ is 1.3481.dh 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-6699}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.59.a_adh | $4$ | (not in LMFDB) |