Invariants
Base field: | $\F_{53}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 6 x + 53 x^{2} )( 1 + 11 x + 53 x^{2} )$ |
$1 + 17 x + 172 x^{2} + 901 x^{3} + 2809 x^{4}$ | |
Frobenius angles: | $\pm0.635198170427$, $\pm0.772597778064$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $40$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3900$ | $8049600$ | $21992864400$ | $62307928800000$ | $174886481712247500$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $71$ | $2865$ | $147722$ | $7896593$ | $418193131$ | $22164237270$ | $1174711393087$ | $62259692373313$ | $3299763633125666$ | $174887469445302825$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 40 curves (of which all are hyperelliptic):
- $y^2=43 x^6+45 x^5+34 x^4+22 x^3+25 x^2+38 x+15$
- $y^2=27 x^6+11 x^5+30 x^4+2 x^3+24 x^2+15 x+44$
- $y^2=44 x^6+21 x^5+9 x^4+44 x^3+51 x^2+18 x+24$
- $y^2=8 x^6+9 x^5+41 x^4+31 x^3+7 x^2+12 x+49$
- $y^2=48 x^6+36 x^5+11 x^4+43 x^3+40 x^2+19 x+52$
- $y^2=3 x^6+24 x^5+34 x^4+7 x^3+22 x^2+35 x+24$
- $y^2=45 x^6+39 x^5+52 x^4+10 x^3+27 x^2+20 x+35$
- $y^2=43 x^6+25 x^5+2 x^4+20 x^3+21 x^2+52 x+40$
- $y^2=17 x^6+41 x^5+16 x^4+4 x^3+52 x^2+9 x+40$
- $y^2=29 x^6+21 x^5+30 x^4+35 x^3+39 x^2+35 x+14$
- $y^2=10 x^6+50 x^5+26 x^4+10 x^3+9 x^2+30 x+36$
- $y^2=19 x^6+13 x^5+11 x^4+12 x^3+30 x^2+47 x+18$
- $y^2=49 x^6+52 x^5+21 x^4+39 x^3+21 x^2+16 x+46$
- $y^2=21 x^6+2 x^5+21 x^4+7 x^3+34 x^2+48 x+23$
- $y^2=16 x^6+45 x^5+38 x^4+15 x^3+x^2+23 x+16$
- $y^2=44 x^6+50 x^5+23 x^4+7 x^3+49 x^2+12 x+28$
- $y^2=50 x^6+14 x^5+10 x^4+14 x^3+46 x^2+28 x+25$
- $y^2=16 x^6+23 x^5+37 x^4+42 x^3+x^2+x+52$
- $y^2=27 x^6+11 x^5+30 x^4+33 x^3+14 x^2+9 x+17$
- $y^2=11 x^6+25 x^5+17 x^4+42 x^3+29 x^2+11 x+13$
- and 20 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$The isogeny class factors as 1.53.g $\times$ 1.53.l and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.53.ar_gq | $2$ | (not in LMFDB) |
2.53.af_bo | $2$ | (not in LMFDB) |
2.53.f_bo | $2$ | (not in LMFDB) |