Properties

Label 2.53.r_gq
Base field $\F_{53}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{53}$
Dimension:  $2$
L-polynomial:  $( 1 + 6 x + 53 x^{2} )( 1 + 11 x + 53 x^{2} )$
  $1 + 17 x + 172 x^{2} + 901 x^{3} + 2809 x^{4}$
Frobenius angles:  $\pm0.635198170427$, $\pm0.772597778064$
Angle rank:  $2$ (numerical)
Jacobians:  $40$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $3900$ $8049600$ $21992864400$ $62307928800000$ $174886481712247500$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $71$ $2865$ $147722$ $7896593$ $418193131$ $22164237270$ $1174711393087$ $62259692373313$ $3299763633125666$ $174887469445302825$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 40 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{53}$.

Endomorphism algebra over $\F_{53}$
The isogeny class factors as 1.53.g $\times$ 1.53.l and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.53.ar_gq$2$(not in LMFDB)
2.53.af_bo$2$(not in LMFDB)
2.53.f_bo$2$(not in LMFDB)