Invariants
Base field: | $\F_{73}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 73 x^{2} )( 1 + 16 x + 73 x^{2} )$ |
$1 + 16 x + 146 x^{2} + 1168 x^{3} + 5329 x^{4}$ | |
Frobenius angles: | $\pm0.5$, $\pm0.885799748780$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $160$ |
This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
$p$-rank: | $1$ |
Slopes: | $[0, 1/2, 1/2, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6660$ | $28584720$ | $151565302980$ | $806116545331200$ | $4297584073895511300$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $90$ | $5366$ | $389610$ | $28386142$ | $2073051450$ | $151335431894$ | $11047393148490$ | $806460089814718$ | $58871586224848410$ | $4297625837590063286$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 160 curves (of which all are hyperelliptic):
- $y^2=69 x^6+61 x^5+17 x^4+61 x^3+70 x^2+29 x+31$
- $y^2=47 x^6+50 x^5+68 x^4+40 x^3+39 x^2+27 x+23$
- $y^2=63 x^6+26 x^5+12 x^4+42 x^3+19 x^2+52 x+17$
- $y^2=26 x^6+12 x^5+10 x^4+29 x^3+10 x^2+12 x+26$
- $y^2=22 x^6+40 x^5+8 x^4+34 x^3+11 x^2+32 x+11$
- $y^2=23 x^6+72 x^5+36 x^4+21 x^3+33 x^2+4 x+6$
- $y^2=19 x^6+66 x^5+63 x^4+x^3+11 x^2+17 x+54$
- $y^2=6 x^6+47 x^5+18 x^4+42 x^3+17 x^2+50 x+55$
- $y^2=48 x^6+16 x^5+52 x^4+35 x^3+42 x^2+37 x+60$
- $y^2=60 x^6+46 x^5+67 x^4+7 x^3+10 x^2+51 x+71$
- $y^2=58 x^6+70 x^5+11 x^4+27 x^3+28 x^2+63 x+72$
- $y^2=50 x^6+30 x^5+12 x^4+28 x^3+48 x^2+56 x+37$
- $y^2=71 x^6+19 x^5+17 x^4+26 x^3+11 x^2+61 x+25$
- $y^2=20 x^6+65 x^5+48 x^4+55 x^3+48 x^2+65 x+20$
- $y^2=42 x^6+37 x^5+50 x^4+32 x^3+11 x^2+21 x+27$
- $y^2=22 x^6+35 x^5+23 x^4+16 x^3+57 x^2+71 x+56$
- $y^2=33 x^6+51 x^5+31 x^4+7 x^3+56 x^2+54 x+21$
- $y^2=25 x^6+61 x^5+9 x^4+15 x^3+69 x^2+60 x+51$
- $y^2=61 x^6+43 x^5+21 x^4+54 x^3+19 x^2+20 x+10$
- $y^2=18 x^6+56 x^5+71 x^4+72 x^3+26 x^2+x+46$
- and 140 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73^{2}}$.
Endomorphism algebra over $\F_{73}$The isogeny class factors as 1.73.a $\times$ 1.73.q and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{73^{2}}$ is 1.5329.aeg $\times$ 1.5329.fq. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.73.aq_fq | $2$ | (not in LMFDB) |
2.73.ag_fq | $4$ | (not in LMFDB) |
2.73.g_fq | $4$ | (not in LMFDB) |