Properties

Label 2.73.q_fq
Base field $\F_{73}$
Dimension $2$
$p$-rank $1$
Ordinary no
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{73}$
Dimension:  $2$
L-polynomial:  $( 1 + 73 x^{2} )( 1 + 16 x + 73 x^{2} )$
  $1 + 16 x + 146 x^{2} + 1168 x^{3} + 5329 x^{4}$
Frobenius angles:  $\pm0.5$, $\pm0.885799748780$
Angle rank:  $1$ (numerical)
Jacobians:  $160$

This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

$p$-rank:  $1$
Slopes:  $[0, 1/2, 1/2, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $6660$ $28584720$ $151565302980$ $806116545331200$ $4297584073895511300$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $90$ $5366$ $389610$ $28386142$ $2073051450$ $151335431894$ $11047393148490$ $806460089814718$ $58871586224848410$ $4297625837590063286$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 160 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{73^{2}}$.

Endomorphism algebra over $\F_{73}$
The isogeny class factors as 1.73.a $\times$ 1.73.q and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
Endomorphism algebra over $\overline{\F}_{73}$
The base change of $A$ to $\F_{73^{2}}$ is 1.5329.aeg $\times$ 1.5329.fq. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.73.aq_fq$2$(not in LMFDB)
2.73.ag_fq$4$(not in LMFDB)
2.73.g_fq$4$(not in LMFDB)