Invariants
Base field: | $\F_{43}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 2 x + 43 x^{2} )( 1 + 6 x + 43 x^{2} )$ |
$1 + 4 x + 74 x^{2} + 172 x^{3} + 1849 x^{4}$ | |
Frobenius angles: | $\pm0.451268054243$, $\pm0.651253488881$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $128$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2100$ | $3670800$ | $6296894100$ | $11681953920000$ | $21611482912960500$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $48$ | $1982$ | $79200$ | $3416974$ | $147008448$ | $6321307214$ | $271819718064$ | $11688203360926$ | $502592527285200$ | $21611482336569182$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 128 curves (of which all are hyperelliptic):
- $y^2=20 x^6+32 x^5+8 x^4+23 x^3+8 x^2+32 x+20$
- $y^2=40 x^6+36 x^4+4 x^3+11 x^2+25 x+23$
- $y^2=20 x^6+19 x^5+3 x^4+4 x^3+33 x^2+21 x+20$
- $y^2=26 x^6+28 x^5+3 x^3+29 x^2+41 x+10$
- $y^2=23 x^6+13 x^5+30 x^4+7 x^3+29 x^2+42 x+20$
- $y^2=35 x^6+23 x^5+35 x^4+26 x^3+41 x^2+9 x+4$
- $y^2=13 x^6+33 x^5+40 x^4+35 x^3+2 x^2+21 x+8$
- $y^2=39 x^6+15 x^5+34 x^4+3 x^3+20 x^2+16 x+33$
- $y^2=18 x^6+x^5+4 x^4+35 x^3+17 x^2+10 x+34$
- $y^2=29 x^6+14 x^5+15 x^4+19 x^3+31 x^2+30 x+13$
- $y^2=6 x^6+28 x^4+39 x^3+40 x^2+8 x+7$
- $y^2=31 x^6+32 x^5+29 x^4+30 x^3+29 x^2+32 x+31$
- $y^2=35 x^6+22 x^5+16 x^4+24 x^3+36 x^2+32 x+2$
- $y^2=5 x^6+8 x^5+40 x^4+38 x^3+25 x^2+12 x+1$
- $y^2=18 x^6+25 x^5+24 x^4+2 x^3+11 x^2+10 x+1$
- $y^2=37 x^6+34 x^5+12 x^4+17 x^3+35 x+39$
- $y^2=10 x^6+11 x^5+3 x^4+2 x^3+42 x^2+6 x+6$
- $y^2=30 x^6+31 x^5+22 x^4+8 x^3+8 x^2+12 x+19$
- $y^2=34 x^6+38 x^5+24 x^4+25 x^3+24 x^2+38 x+34$
- $y^2=28 x^6+31 x^5+15 x^4+4 x^3+3 x^2+41 x+3$
- and 108 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43}$.
Endomorphism algebra over $\F_{43}$The isogeny class factors as 1.43.ac $\times$ 1.43.g and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.43.ai_du | $2$ | (not in LMFDB) |
2.43.ae_cw | $2$ | (not in LMFDB) |
2.43.i_du | $2$ | (not in LMFDB) |