L(s) = 1 | − 10·25-s − 16·29-s + 2·49-s − 16·53-s + 12·73-s − 4·97-s − 16·101-s − 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 10·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + ⋯ |
L(s) = 1 | − 2·25-s − 2.97·29-s + 2/7·49-s − 2.19·53-s + 1.40·73-s − 0.406·97-s − 1.59·101-s − 0.545·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 0.769·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 165888 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 165888 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.219114756198044728648161568781, −8.366592611317065372476631314697, −8.010518840561180627174248179709, −7.53735759957817867087567611962, −7.18412738729399301232412909239, −6.43716389488180318603855560179, −5.98908668827053001907758425067, −5.48924235501713068741842350895, −5.03727865827155804779989654433, −4.13363250810068780996127847003, −3.82635392677617799455139033772, −3.15222754575850051386776546944, −2.17974866595190013641842980315, −1.63068901786224221675024576209, 0,
1.63068901786224221675024576209, 2.17974866595190013641842980315, 3.15222754575850051386776546944, 3.82635392677617799455139033772, 4.13363250810068780996127847003, 5.03727865827155804779989654433, 5.48924235501713068741842350895, 5.98908668827053001907758425067, 6.43716389488180318603855560179, 7.18412738729399301232412909239, 7.53735759957817867087567611962, 8.010518840561180627174248179709, 8.366592611317065372476631314697, 9.219114756198044728648161568781