| L(s) = 1 | + 3·3-s − 4·4-s + 2·5-s − 7-s + 6·9-s − 12·12-s + 6·15-s + 12·16-s − 4·17-s − 8·20-s − 3·21-s − 7·25-s + 9·27-s + 4·28-s − 2·35-s − 24·36-s − 10·37-s + 4·41-s − 16·43-s + 12·45-s − 16·47-s + 36·48-s + 49-s − 12·51-s − 6·59-s − 24·60-s − 6·63-s + ⋯ |
| L(s) = 1 | + 1.73·3-s − 2·4-s + 0.894·5-s − 0.377·7-s + 2·9-s − 3.46·12-s + 1.54·15-s + 3·16-s − 0.970·17-s − 1.78·20-s − 0.654·21-s − 7/5·25-s + 1.73·27-s + 0.755·28-s − 0.338·35-s − 4·36-s − 1.64·37-s + 0.624·41-s − 2.43·43-s + 1.78·45-s − 2.33·47-s + 5.19·48-s + 1/7·49-s − 1.68·51-s − 0.781·59-s − 3.09·60-s − 0.755·63-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 373527 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 373527 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.513651119993219671602342798866, −8.333198695137771254103563674887, −7.66866498238269472650919646245, −7.41775134048211629573821110448, −6.42370236549041572726553632076, −6.27653205655726142636171995192, −5.38913047752314397636287568574, −4.95399628290113050953278162390, −4.53418395180193611114078817717, −3.85266175099960933742282200478, −3.48522622489004363314719629746, −3.04533793513601036750822233008, −2.00735365908684561839702035924, −1.58751343454368774869669820755, 0,
1.58751343454368774869669820755, 2.00735365908684561839702035924, 3.04533793513601036750822233008, 3.48522622489004363314719629746, 3.85266175099960933742282200478, 4.53418395180193611114078817717, 4.95399628290113050953278162390, 5.38913047752314397636287568574, 6.27653205655726142636171995192, 6.42370236549041572726553632076, 7.41775134048211629573821110448, 7.66866498238269472650919646245, 8.333198695137771254103563674887, 8.513651119993219671602342798866