| L(s) = 1 | + 3-s + 9-s − 4·11-s − 8·13-s − 4·23-s − 2·25-s + 27-s − 4·33-s + 4·37-s − 8·39-s − 12·47-s + 10·49-s − 8·59-s − 4·61-s − 4·69-s − 4·71-s + 4·73-s − 2·75-s + 81-s − 4·83-s − 4·97-s − 4·99-s − 32·107-s + 4·111-s − 8·117-s − 6·121-s + 127-s + ⋯ |
| L(s) = 1 | + 0.577·3-s + 1/3·9-s − 1.20·11-s − 2.21·13-s − 0.834·23-s − 2/5·25-s + 0.192·27-s − 0.696·33-s + 0.657·37-s − 1.28·39-s − 1.75·47-s + 10/7·49-s − 1.04·59-s − 0.512·61-s − 0.481·69-s − 0.474·71-s + 0.468·73-s − 0.230·75-s + 1/9·81-s − 0.439·83-s − 0.406·97-s − 0.402·99-s − 3.09·107-s + 0.379·111-s − 0.739·117-s − 0.545·121-s + 0.0887·127-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 110592 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 110592 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.367877741844543050193015393776, −8.790645869348743541583890140431, −8.035717308600831141301879015920, −7.85432091676046990884579057078, −7.45083567807958670352178173490, −6.88378748099844220672693140137, −6.27231158206486611716078998519, −5.49196956912349091149082758541, −5.10878103773446000549867404225, −4.51086264680998032873079294263, −3.93773837536640582704719617912, −2.90061416096460280548678209478, −2.60708411241997444998295536301, −1.81960830191351705336228642595, 0,
1.81960830191351705336228642595, 2.60708411241997444998295536301, 2.90061416096460280548678209478, 3.93773837536640582704719617912, 4.51086264680998032873079294263, 5.10878103773446000549867404225, 5.49196956912349091149082758541, 6.27231158206486611716078998519, 6.88378748099844220672693140137, 7.45083567807958670352178173490, 7.85432091676046990884579057078, 8.035717308600831141301879015920, 8.790645869348743541583890140431, 9.367877741844543050193015393776