Invariants
| Base field: | $\F_{71}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 71 x^{2} )( 1 + 4 x + 71 x^{2} )$ |
| $1 + 4 x + 142 x^{2} + 284 x^{3} + 5041 x^{4}$ | |
| Frobenius angles: | $\pm0.5$, $\pm0.576280895962$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $126$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
| $p$-rank: | $1$ |
| Slopes: | $[0, 1/2, 1/2, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $5472$ | $26790912$ | $127818965088$ | $645350204620800$ | $3255386312461587552$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $76$ | $5310$ | $357124$ | $25395806$ | $1804308476$ | $128101094622$ | $9095114161076$ | $645753497675326$ | $45848501075246764$ | $3255243551966191230$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 126 curves (of which all are hyperelliptic):
- $y^2=37 x^6+31 x^5+16 x^4+2 x^3+8 x^2+61 x+49$
- $y^2=59 x^6+57 x^5+42 x^4+38 x^3+42 x^2+57 x+59$
- $y^2=3 x^6+64 x^5+6 x^4+6 x^3+20 x^2+9 x+48$
- $y^2=7 x^6+37 x^5+54 x^4+35 x^3+54 x^2+37 x+7$
- $y^2=24 x^6+67 x^5+37 x^4+15 x^3+5 x^2+66 x+29$
- $y^2=11 x^6+39 x^5+45 x^4+45 x^3+45 x^2+39 x+11$
- $y^2=58 x^6+44 x^5+6 x^4+69 x^3+56 x^2+45 x+11$
- $y^2=12 x^6+67 x^5+55 x^4+13 x^3+4 x^2+59 x+53$
- $y^2=60 x^6+x^5+33 x^4+39 x^3+19 x^2+50 x+9$
- $y^2=20 x^6+35 x^5+34 x^4+x^3+44 x^2+34 x+5$
- $y^2=26 x^6+23 x^5+60 x^4+56 x^3+15 x^2+68 x+47$
- $y^2=65 x^6+3 x^5+42 x^4+63 x^3+42 x^2+3 x+65$
- $y^2=46 x^6+25 x^5+55 x^4+2 x^3+46 x^2+48 x+67$
- $y^2=66 x^6+29 x^5+15 x^4+27 x^3+15 x^2+29 x+66$
- $y^2=17 x^6+61 x^5+7 x^4+4 x^3+61 x^2+36 x+26$
- $y^2=13 x^6+69 x^5+32 x^4+15 x^3+32 x^2+69 x+13$
- $y^2=57 x^6+66 x^5+19 x^4+41 x^3+19 x^2+66 x+57$
- $y^2=56 x^6+67 x^5+6 x^4+48 x^3+40 x^2+51 x+68$
- $y^2=21 x^6+17 x^5+37 x^4+25 x^3+37 x^2+17 x+21$
- $y^2=48 x^6+5 x^5+46 x^3+53 x^2+52 x+15$
- and 106 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71^{2}}$.
Endomorphism algebra over $\F_{71}$| The isogeny class factors as 1.71.a $\times$ 1.71.e and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{71^{2}}$ is 1.5041.ew $\times$ 1.5041.fm. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.71.ae_fm | $2$ | (not in LMFDB) |